[1]
Effros RM. Anatomy, development, and physiology of the lungs.
GI Motility online. 2006.
[2]
Rizzo DC. Fundamentals of anatomy and physiology. 2015.
[3]
Marieb EN, Hoehn K. Human anatomy & physiology 2007.
[5]
Adler S, Basketter D, Creton S, et al. Alternative (non-animal) methods for cosmetics testing: current status and future prospects-2010. Arch Toxicol 2011; 85(5): 367-485.
[6]
Kleinert M, Clemmensen C, Hofmann SM, et al. Animal models of obesity and diabetes mellitus. Nat Rev Endocrinol 2018; 14(3): 140-62.
[7]
Bonfield TL. In vivo models of lung disease. Lung Diseases-Selected State of the Art Reviews 2012.
[8]
Ragaller M, Richter T. Acute lung injury and acute respiratory distress syndrome. J Emerg Trauma Shock 2010; 3(1): 43-51.
[9]
Northway WH Jr, Rosan RC, Porter DY. Pulmonary disease following respirator therapy of hyaline-membrane disease. Bronchopulmonary dysplasia. N Engl J Med 1967; 276(7): 357-68.
[10]
Snider GL. Interstitial pulmonary fibrosis. Chest 1986; 89(3)(Suppl.): 115S-21S.
[11]
Djukanović R, Wilson JW, Britten KM, et al. Effect of an inhaled corticosteroid on airway inflammation and symptoms in asthma. Am Rev Respir Dis 1992; 145(3): 669-74.
[12]
Mountain CF. Revisions in the International System for Staging Lung Cancer. Chest 1997; 111(6): 1710-7.
[13]
Davies JC, Alton EWFW, Bush A. Cystic fibrosis. BMJ 2007; 335(7632): 1255-9.
[14]
Simonetti G, Bertilaccio MT, Ghia P, Klein U, et al. Mouse models in the study of chronic lymphocytic leukemia pathogenesis and therapy. Blood 2014; 124(7): 1010-9.
[15]
Villa-Diaz LG, Ross AM, Lahann J, Krebsbach PH. Concise review: The evolution of human pluripotent stem cell culture: from feeder cells to synthetic coatings. Stem Cells 2013; 31(1): 1-7.
[16]
Duval K, Grover H, Han LH, et al. Modeling Physiological Events in 2D vs. 3D Cell Culture. Physiology 2017; 32(4): 266-77.
[18]
Fang Y, Eglen RM. Three-dimensional cell cultures in drug discovery and development Slas discovery: Advancing Life Sciences R&D, 2017. 22(5): p. 456-472.
[19]
Amann A, Zwierzina M, Gamerith G, et al. Development of an innovative 3D cell culture system to study tumour-stroma interactions in non-small cell lung cancer cells. PLoS One 2014; 9(3): e92511.
[20]
Chimenti I, Pagano F, Angelini F, et al. Human lung spheroids as in vitro niches of lung progenitor cells with distinctive paracrine and plasticity properties. Stem Cells Transl Med 2017; 6(3): 767-77.
[21]
Horváth L, Umehara Y, Jud C, Blank F, Petri-Fink A, Rothen-Rutishauser B. Engineering an in vitro air-blood barrier by 3D bioprinting. Scientific reports 2015; 5: srep07974.
[22]
Wüst S, Müller R, Hofmann S. Controlled positioning of cells in biomaterials-approaches towards 3D tissue printing. J Funct Biomater 2011; 2(3): 119-54.
[23]
Gao G, Huang Y, Schilling AF, Hubbell K, Cui X. Organ Bioprinting: Are We There Yet? Adv Healthc Mater 2018; 7(1): 1701018.
[24]
Kolesky DB, Homan KA, Skylar-Scott MA, Lewis JA. Three-dimensional bioprinting of thick vascularized tissues. Proc Natl Acad Sci USA 2016; 113(12): 3179-84.
[25]
Murphy SV, Atala A. 3D bioprinting of tissues and organs. Nat Biotechnol 2014; 32(8): 773-85.
[26]
Lee D-H, Bae CY, Kwon S, Park J. User-friendly 3D bioassays with cell-containing hydrogel modules: Narrowing the gap between microfluidic bioassays and clinical end-users’ needs. Lab Chip 2015; 15(11): 2379-87.
[27]
Ozbolat I. 3D Bioprinting: Fundamentals 2016.
[28]
Yang X, Li K, Zhang X, et al. Nanofiber membrane supported lung-on-a-chip microdevice for anti-cancer drug testing. Lab Chip 2018; 18(3): 486-95.
[29]
Ellem SJ, De-Juan-Pardo EM, Risbridger GP. In vitro modeling of the prostate cancer microenvironment. Adv Drug Deliv Rev 2014; 79-80: 214-21.
[30]
Asghar W, El Assal R, Shafiee H, Pitteri S, Paulmurugan R, Demirci U. Engineering cancer microenvironments for in vitro 3-D tumor models. Mater Today (Kidlington) 2015; 18(10): 539-53.
[31]
Wu Z, Su X, Xu Y, Kong B, Sun W, Mi S. Bioprinting three-dimensional cell-laden tissue constructs with controllable degradation. Sci Rep 2016; 6: 24474.
[32]
Huh D, Matthews BD, Mammoto A, Montoya-Zavala M, Hsin HY, Ingber DE. Reconstituting organ-level lung functions on a chip. Science 2010; 328(5986): 1662-8.
[33]
Bhatia SN, Ingber DE. Microfluidic organs-on-chips. Nat Biotechnol 2014; 32(8): 760-72.
[34]
Delgado O, Kaisani AA, Spinola M, et al. Multipotent capacity of immortalized human bronchial epithelial cells. PLoS One 2011; 6(7): e22023.
[35]
Coraux C, Nawrocki-Raby B, Hinnrasky J, et al. Embryonic stem cells generate airway epithelial tissue. Am J Respir Cell Mol Biol 2005; 32(2): 87-92.
[36]
Barkauskas CE, Chung MI, Fioret B, Gao X, Katsura H, Hogan BL. Lung organoids: current uses and future promise. Development 2017; 144(6): 986-97.
[37]
Hogan BL, Barkauskas CE, Chapman HA, et al. Repair and regeneration of the respiratory system: complexity, plasticity, and mechanisms of lung stem cell function. Cell Stem Cell 2014; 15(2): 123-38.
[38]
Rock JR, Onaitis MW, Rawlins EL, et al. Basal cells as stem cells of the mouse trachea and human airway epithelium. Proc Natl Acad Sci USA 2009; 106(31): 12771-5.
[39]
Nikolić MZ, Caritg O, Jeng Q, et al. Human embryonic lung epithelial tips are multipotent progenitors that can be expanded in vitro as long-term self-renewing organoids. eLife 2017; 6: 6.
[40]
Lee J-H, Bhang DH, Beede A, et al. Lung stem cell differentiation in mice directed by endothelial cells via a BMP4-NFATc1-thrombospondin-1 axis. Cell 2014; 156(3): 440-55.
[41]
Dye BR, Dedhia PH, Miller AJ, et al. A bioengineered niche promotes in vivo engraftment and maturation of pluripotent stem cell derived human lung organoids. eLife 2016; 5: 5.
[42]
Nadkarni RR, Abed S, Draper JS. Organoids as a model system for studying human lung development and disease. Biochem Biophys Res Commun 2016; 473(3): 675-82.
[43]
Benam KH, Villenave R, Lucchesi C, et al. Small airway-on-a-chip enables analysis of human lung inflammation and drug responses in vitro. Nat Methods 2016; 13(2): 151-7.
[44]
Dye BR, Hill DR, Ferguson MA, et al. In vitro generation of human pluripotent stem cell derived lung organoids. eLife 2015; 4: 4.
[45]
Huh D, Matthews BD, Mammoto A, Montoya-Zavala M, Hsin HY, Ingber DE. Reconstituting organ-level lung functions on a chip. Science 2010; 328(5986): 1662-8.
[46]
Selimović S, Dokmeci MR, Khademhosseini A. Organs-on-a-chip for drug discovery. Curr Opin Pharmacol 2013; 13(5): 829-33.
[47]
Zhang Y, Gazit Z, Pelled G, Gazit D, Vunjak-Novakovic G. Patterning osteogenesis by inducible gene expression in microfluidic culture systems. Integr Biol 2011; 3(1): 39-47.
[48]
Jang K-J, Suh K-Y. A multi-layer microfluidic device for efficient culture and analysis of renal tubular cells. Lab Chip 2010; 10(1): 36-42.
[49]
van der Meer AD, Orlova VV, ten Dijke P, van den Berg A, Mummery CL. Three-dimensional co-cultures of human endothelial cells and embryonic stem cell-derived pericytes inside a microfluidic device. Lab Chip 2013; 13(18): 3562-8.
[50]
Jang K-J, Mehr AP, Hamilton GA, et al. Human kidney proximal tubule-on-a-chip for drug transport and nephrotoxicity assessment. Integr Biol 2013; 5(9): 1119-29.
[51]
Esch MB, Sung JH, Yang J, et al. On chip porous polymer membranes for integration of gastrointestinal tract epithelium with microfluidic ‘body-on-a-chip’ devices. Biomed Microdevices 2012; 14(5): 895-906.
[52]
Xiao R-R, Zeng WJ, Li YT, et al. Simultaneous generation of gradients with gradually changed slope in a microfluidic device for quantifying axon response. Anal Chem 2013; 85(16): 7842-50.
[53]
Torisawa YS, Spina CS, Mammoto T, et al. Bone marrow-on-a-chip replicates hematopoietic niche physiology in vitro. Nat Methods 2014; 11(6): 663-9.
[54]
Booth R, Kim H. Characterization of a microfluidic in vitro model of the blood-brain barrier (μBBB). Lab Chip 2012; 12(10): 1784-92.
[55]
Grosberg A, Nesmith AP, Goss JA, Brigham MD, McCain ML, Parker KK. Muscle on a chip: in vitro contractility assays for smooth and striated muscle. J Pharmacol Toxicol Methods 2012; 65(3): 126-35.
[56]
Musah S, Mammoto A, Ferranate TC, et al. Mature induced-pluripotent-stem-cell-derived human podocytes reconstitute kidney glomerular-capillary-wall function on a chip Nat Biomed Eng; 2017: 1(5): 0069.
[58]
Nagrath S, Sequist LV, Maheswaran S, et al. Isolation of rare circulating tumour cells in cancer patients by microchip technology. Nature 2007; 450(7173): 1235-9.
[59]
Siyan W, Feng Y, Lichuan Z, et al. Application of microfluidic gradient chip in the analysis of lung cancer chemotherapy resistance. J Pharm Biomed Anal 2009; 49(3): 806-10.
[60]
Stott SL, Hsu CH, Tsukrov DI, et al. Isolation of circulating tumor cells using a microvortex-generating herringbone-chip. Proc Natl Acad Sci USA 2010; 107(43): 18392-7.
[61]
Xu Z, Gao Y, Hao Y, et al. Application of a microfluidic chip-based 3D co-culture to test drug sensitivity for individualized treatment of lung cancer. Biomaterials 2013; 34(16): 4109-17.
[62]
Huang T, Jia CP. Jun-Yang , et al Highly sensitive enumeration of circulating tumor cells in lung cancer patients using a size-based filtration microfluidic chip. Biosens Bioelectron 2014; 51: 213-8.
[63]
Earhart CM, Hughes CE, Gaster RS, et al. Isolation and mutational analysis of circulating tumor cells from lung cancer patients with magnetic sifters and biochips. Lab Chip 2014; 14(1): 78-88.
[64]
McDonald JC, Whitesides GM. Poly(dimethylsiloxane) as a material for fabricating microfluidic devices. Acc Chem Res 2002; 35(7): 491-9.
[65]
Ochs M, Mühlfeld C. Quantitative microscopy of the lung: a problem-based approach. Part 1: basic principles of lung stereology. Am J Physiol Lung Cell Mol Physiol 2013; 305(1): L15-22.
[66]
Ball JM, James RD. Fine phase mixtures as minimizers of energy. Arch Ration Mech Anal 1987; 100(1): 13-52.
[67]
Huh DD. A human breathing lung-on-a-chip. Ann Am Thorac Soc 2015; 12(Suppl. 1): S42-4.
[69]
Huh D, et al. A human disease model of drug toxicity–induced pulmonary edema in a lung-on-a-chip microdevice. Science translational medicine 2012; 4(159): 159-47.
[70]
Long C, Finch C, Esch M, Anderson W, Shuler M, Hickman J. Design optimization of liquid-phase flow patterns for microfabricated lung on a chip. Ann Biomed Eng 2012; 40(6): 1255-67.
[71]
Punde TH, Wu WH, Lien PC, et al. A biologically inspired lung-on-a-chip device for the study of protein-induced lung inflammation. Integr Biol 2015; 7(2): 162-9.
[72]
Stucki AO, Stucki JD, Hall SR, et al. A lung-on-a-chip array with an integrated bio-inspired respiration mechanism. Lab Chip 2015; 15(5): 1302-10.
[73]
Wang L, Tao T, Su W, Yu H, Yu Y, Qin J. A disease model of diabetic nephropathy in a glomerulus-on-a-chip microdevice. Lab Chip 2017; 17(10): 1749-60.
[74]
Griffin M, Bhandari R, Hamilton G, Chan YC, Powell JT. Alveolar type II cell-fibroblast interactions, synthesis and secretion of surfactant and type I collagen. J Cell Sci 1993; 105(Pt 2): 423-32.
[75]
Shannon JM, Pan T, Nielsen LD, Edeen KE, Mason RJ. Lung fibroblasts improve differentiation of rat type II cells in primary culture. Am J Respir Cell Mol Biol 2001; 24(3): 235-44.
[76]
Herold S, Mayer K, Lohmeyer J. Acute lung injury: how macrophages orchestrate resolution of inflammation and tissue repair. Front Immunol 2011; 2: 65.