[1]
Kansy, M.; Senner, F.; Gubernator, K. Physicochemical high throughput screening: Parallel artificial membrane permeation assay in the description of passive absorption processes. J. Med. Chem., 1998, 41, 1007-1010.
[2]
Petit, C.; Bujard, A.; Skalicka-Wozniak, K.; Cretton, S.; Houriet, J.; Christen, P.; Carrupt, P.A. Wolfender, J.L. Prediction of the passive intestinal absorption of medicinal plant extract constituents with the Parallel Artificial Membrane Permeability Assay (PAMPA). Planta Med., 2016, 82, 424-431.
[3]
Piazzini, V.; Bigagli, E.; Luceri, C.; Bilia, A.R.; Bergonzi, M.C. Enhanced solubility and permeability of Salicis cortex extract by formulating as Microemulsion. Planta Med., 2018, 84(12-13), 976-984.
[4]
Graverini, G.; Piazzini, V.; Landucci, E.; Casamenti, F.; Pantano, D.; Pellegrini-Giampietro, D.; Bilia, A.R.; Bergonzi, M.C. Preparation of solid lipid nanoparticles for the delivery of Andrographolide across the blood-brain barrier: In vitro and in vivo evaluations. Colloids Surf. B, 2018, 161, 302-313.
[5]
Piazzini, V.; Rosseti, C.; Bigagli, E.; Luceri, C.; Bilia, A.R.; Bergonzi, M.C. Prediction of permeation and cellular transport of Silybum marianum extract formulated in nanoemulsion by using PAMPA and Caco-2 cell models. Planta Med., 2017, 83, 1184-1193.
[6]
Piazzini, V.; Monteforte, E.; Luceri, C.; Bigagli, E.; Bilia, A.R.; Bergonzi, M.C. Nanoemulsion for improving oral bioavailability of Vitex agnus castus extract: Formulation and in vitro evaluation using PAMPA and Caco-2 approaches. Drug Deliv., 2017, 24, 380-390.
[7]
Righeschi, C.; Bergonzi, M.C.; Isacchi, B.; Bazzicalupi, C.; Gratteri, P.; Bilia, A.R. Enhanced curcumin permeability by SLN formulation: The PAMPA approach. LWT - Food Sci. Techn., 2016, 66, 475-483.
[8]
Bergonzi, M.C.; Hamdouch, R.; Mazzacuva, F.; Isacchi, B.; Bilia, A.R. Optimization, characterization and in vitro evaluation of curcumin microemulsions. LWT-Food Sci. Techn, 2014, 59, 148-155.
[9]
Piazzini, V.; Landucci, E.; Graverini, G.; Pellegrini-Giampietro, D.E.; Bilia, A.R.; Bergonzi, M.C. Stealth and cationic nanoliposomes as drug delivery systems to increase andrographolide BBB permeability. Pharmaceutics, 2018, 10, 128.
[10]
Ottaviani, G.; Martel, S.; Carrupt, P.A. Parallel artificial membrane permeability assay: A new membrane for the fast prediction of passive human skin permeability. J. Med. Chem., 2006, 49(13), 3948-3954.
[11]
Avdeef, A. The rise of PAMPA. Expert Opin. Drug Metab. Toxicol., 2005, 1, 325-342.
[12]
Avdeef, A.; Bendels, S.; Di, L.; Faller, B.; Kansy, M.; Sugano, K.; Yamauchi, Y. PAMPA: Critical factors for better prediction of absorption. J. Pharm. Sci., 2007, 96, 2893-2909.
[13]
Avdeef, A.; Tsinman, O. PAMPA -a drug absorption in vitro model: 13. Chemical selectivity due to membrane hydrogen bonding: In combo comparison of HDM-, DOPC-, and DS-PAMPA models. Eur. J. Pharm. Sci., 2006, 28, 43-50.
[14]
Tsinman, O.; Tsinman, K.; Sun, N.; Avdeef, A. Physicochemical selectivity of the BBB microenvironment governing passive diffusion–matching with a porcine brain lipid extract artificial membrane permeability model. Pharm. Res., 2011, 28, 337-363.
[15]
Di, L.; Kerns, E.H.; Fan, K.; McConnell, O.J.; Carter, G.T. High throughput artificial membrane permeability assay for blood-brain barrier. Eur. J. Med. Chem., 2003, 38, 223-232.
[16]
Dobricic´, V.; Markovic´, B.; Nikolic, K.; Savic´, V.; Vladimirov, S.; Cudina, O. 17b-carboxamide steroids in vitro prediction of human skin permeability and retention using PAMPA technique. Eur. J. Pharm. Sci., 2014, 52, 95-108.
[17]
Sinkó, B.; Kökösi, J.; Avdeef, A.; Takács-Novák, K. A PAMPA study of the permeability-enhancing effect of new ceramide analogues. Chem. Biodiv., 2009, 6, 1867-1874.
[18]
Sinkó, B.; Garrigues, T.M.; Balogh, G.T.; Nagy, Z.K.; Tsinman, O.; Avdeef, A.; Takács-Novák, K. Skin–PAMPA: A new method for fast prediction of skin penetration. Eur. J. Pharm. Sci., 2012, 45, 698-707.
[19]
Sinkó, B.; Vizserálek, G.; Takács-Novák, K. Skin PAMPA: Application in practice. ADMET & DMPK, 2014, 2(4), 191-198.
[20]
Fasano, W.J.; Berge, W.F.; Banton, M.I.; Heneweer, M.; Moore, N.P. Dermal penetration of propylene glycols: Measured absorption across human abdominal skin in vitro and comparison with a QSAR model. Toxicol. In Vitro, 2011, 25, 1664-1670.
[21]
Escuder-Gilabert, L.; Martínez-Pla, J.J.; Sagrado, S.; Villanueva-Camañas, R.M.; Medina-Hernández, M.J. Biopartitioning micellar separation methods: Modelling drug absorption. J. Chromatogr. B., 2003, 797, 21-35.
[22]
Todo, H.; Kimura, E.; Yasuno, H.; Tokudome, Y.; Hashimoto, F.; Ikarashi, Y.; Sugibayashi, K. Permeation pathway of macromolecules and nanospheres through skin. Biol. Pharm. Bull., 2010, 33(8), 1394-1399.
[23]
Yoshimatsu, H.; Ishii, K.; Konno, Y.; Satsukawa, M.; Yamashita, S. Prediction of human percutaneous absorption from in vitro and in vivo animal experiments. Int. J. Pharm., 2017, 534(1-2), 348-355.
[24]
Mathes, S.H.; Ruffner, H.; Graf-Hausner, U. The use of skin models in drug development. Adv. Drug Deliv. Rev., 2014, 69, 81-102.
[25]
Khan, G.M.; Frum, Y.; Sarheed, O.; Eccleston, G.M.; Meidan, V.M. Assessment of drug permeability distributions in two different model skins. Int. J. Pharm., 2005, 303(1-2), 81-87.
[26]
Tsinman, K.; Tsinman, O.; Schalau, G.; Aliyar, H.; Huber, R.; Loubert, G. Application of skin PAMPA to differentiate between topical pharmaceutical formulations of ibuprofen. (R6058) in AAPS Annual Meeting and Exposition, 2012.Chicago
[27]
Vizseralek, G.; Sinkó, B.; Tsinman, K.; Takács-Novák, K. Developing a method for skin pampa to test transdermal patches. (M1237) in AAPS Annual Meeting and Exposition, 2014.San Diego
[28]
Bhat, K.P.L.; Kosmeder, J.W.; Pezzuto, J.M. Biological effects of resveratrol. Antioxid. Redox Signal., 2001, 3, 1041-1064.
[29]
Gambini, J.; Inglés, M.; Olaso, G.; Lopez-Grueso, R.; Bonet-Costa, V.; Gimeno-Mallench, L.; Mas-Bargues, C.; Abdelaziz, K.M.; Gomez-Cabrera, M.C.; Vina, J.; Borras, C. Properties of resveratrol: In vitro and in vivo studies about metabolism, bioavailability, and biological effects in animal models and humans. Oxid. Med. Cell. Longev., 2015, 2015, 1-13, 837042.
[30]
Ndiaye, M.; Philippe, C.; Mukhtara, H.; Ahmada, N. The grape antioxidant resveratrol for skin disorders: Promise, prospects, and challenges. Arch. Biochem. Biophys., 2011, 508, 164-170.
[31]
Baxter, R.A. Anti-aging properties of resveratrol: Review and report of a potent new antioxidant skin care formulation. J. Cosmet. Dermatol., 2008, 7, 2-7.
[32]
Sinico, C.; Pireddu, R.; Pini, E.; Valenti, D.; Caddeo, C.; Fadda, A.M.; Lai, F. Enhancing topical delivery of resveratrol through a nanosizing approach. Planta Med., 2017, 83, 476-481.
[33]
Jain, S.; Patel, N.; Shah, M.K.; Khatri, P.; Vora, N. Recent advances in lipid-based vesicles and particulate carriers for topical and transdermal application. J. Pharm., 2017, 106(2), 423-445.
[34]
Jain, S.; Patel, N.; Madan, P.; Lin, S. Quality by design approach for formulation, evaluation and statistical optimization of diclofenac-loaded ethosomes via transdermal route. Pharm. Dev. Technol., 2015, 20(4), 473-489.
[35]
Chen, Y.; Wu, Q.; Zhang, Z.; Yuan, L.; Liu, X.; Zhou, L. Preparation of curcumin-loaded liposomes and evaluation of their skin permeation and pharmacodynamics. Molecules, 2012, 17(5), 5972-5987.
[36]
Hua, S. Development of an effective topical liposomal formulation for localized analgesia and anti-inflammatory actions in the complete freund’s adjuvant rodent model of acute inflammatory pain. Pain Physician, 2014, 17, E719-E735.
[37]
Ning, M.; Guo, Y.; Pan, H.; Chen, X.; Gu, Z. Preparation, in vitro and in vivo evaluation of liposomal/niosomal gel delivery systems for clotrimazole. Drug Dev. Ind. Pharm., 2005, 31(4-5), 375-383.
[38]
Dorrani, M.; Garbuzenko, O.B.; Minko, T.; Michniak-Kohn, B. Development of edge-activated liposomes for siRNA delivery to human basal epidermis for melanoma therapy. J. Control. Release, 2016, 228, 150-158.
[39]
Bangham, A.D.; Standish, M.M.; Watkins, J.C. Diffusion of univalent ions across the lamellae of swollen phospholipids. J. Mol. Biol., 1965, 13, 238-252.
[40]
Kwon, S.S.; Kim, S.Y.; Kong, B.J.; Kim, K.J.; Noh, G.Y.; Im, N.R.; Park, S.N. Cell penetrating peptide conjugated liposomes as transdermal delivery system of Polygonum aviculare L. extract. Int. J. Pharm., 2015, 483(1-2), 26-37.
[41]
Fang, J.Y.; Fang, C.L.; Liu, C.H.; Su, Y.H. Lipid nanoparticles as vehicles for topical psoralen delivery: solid lipid nanoparticles (SLN) versus nanostructured lipid carriers (NLC). Eur. J. Pharm. Biopharm., 2008, 70(2), 633-640.
[42]
Ravani, L.; Esposito, E.; Bories, C.; Lievin-Le Moal, V.; Loiseau, P.M.; Djabourov, M.; Bouchemal, K. Clotrimazole-loaded nanostructured lipid carrier hydrogels: Thermal analysis and in vitro studies. Int. J. Pharm., 2013, 454(2), 695-702.
[43]
Brugè, F.; Damiani, E.; Puglia, C.; Offerta, A.; Armeni, T.; Littarru, G.P.; Tiano, L. Nanostructured lipid carriers loaded with CoQ10: effect on human dermal fibroblasts under normal and UVA-mediated oxidative conditions. Int. J. Pharm., 2013, 455(1-2), 348-356.
[44]
Kawadkar, J.; Pathak, A.; Kishore, R.; Chauhan, M.K. Formulation, characterization and in vitro–in vivo evaluation of flurbiprofen-loaded nanostructured lipid carriers for transdermal delivery. Drug Dev. Ind. Pharm., 2013, 39(4), 569-578.
[45]
Pople, P.V.; Singh, K.K. Development and evaluation of colloidal modified nanolipid carrier: Application to topical delivery of tacrolimus, Part II–In vivo assessment, drug targeting, efficacy, and safety in treatment for atopic dermatitis. Eur. J. Pharm. Biopharm., 2013, 84(1), 72-83.
[46]
Pardeike, J.; Hommoss, A.; Müller, R.H. Lipid nanoparticles (SLN, NLC) in cosmetic and pharmaceutical dermal products. Int. J. Pharm., 2009, 366(1-2), 170-184.
[47]
Shrotriya, S.N.; Ranpise, N.S.; Vidhate, B.V. Skin targeting of resveratrol utilizing solid lipid nanoparticle-engrossed gel for chemically induced irritant contact dermatitis. Drug Deliv. Transl. Res., 2017, 7, 37-52.
[48]
Mendes, A.I.; Silva, A.C.; Catita, J.A.M.; Cerqueira, F.; Gabriel, C.; Lopes, C.M. Miconazole-loaded nanostructured lipid carriers (NLC) for local delivery to the oral mucosa: Improving antifungal activity. Colloids Surf. B, 2013, 111, 755-763.
[49]
Sjöström, B.; Kaplun, A.; Talmon, Y.; Cabane, B. Structures of nanoparticles prepared from oil-in-water emulsions. Pharm. Res., 1995, 12(1), 39-48.
[50]
Markovic, B.D.; Vladimirov, S.M.; Cudina, O.A.; Odovic, J.V.; Karljikovic-Rajic, K.D. A PAMPA assay as fast predictive model of passive human skin permeability of new synthesized corticosteroid C-21 esters. Molecules, 2012, 17(1), 480-491.
[51]
Dubes, A.; Parrot-Lopez, H.; Abdelwahed, W.; Degobert, G.; Fessi, H.; Shahgaldian, P.; Coleman, A.W. Scanning electron microscopy and atomic force microscopy imaging of solid lipid nanoparticles derived from amphiphilic cyclodextrins. Eur. J. Pharm. Biopharm., 2003, 55(3), 279-282.
[52]
Zhang, W.; Fei, Z.; Zhen, H.N.; Zhang, J.N.; Zhang, X. Resveratrol inhibits cell growth and induces apoptosis of rat C6 glioma cells. J. Neurooncol., 2007, 81(3), 231-240.
[53]
Severino, P.; Pinho, S.C.; Souto, E.B.; Santana, M.H. Polymorphism, crystallinity and hydrophilic–lipophilic balance of stearic acid and stearic acid–capric/caprylic triglyceride matrices for production of stable nanoparticles. Colloids Surf. B, 2011, 86(1), 125-130.
[54]
Caddeo, C.; Manconi, M.; Valenti, D.; Maccioni, A.M.; Fadda, A.M.; Sinico, C. The role of Labrasol® in the enhancement of the cutaneous bioavailability of minoxidil in phospholipid vesicles. Res. J. Pharm. Technol, 2012, 5, 1563-1569.
[55]
Caprylocaproyl polyoxylglyceride (Labrasol) US Pharmacopoeias USP 28-NF 23, suppl 1 IIG/EP 2005.
[56]
Figueiras, T.S.; Neves-Petersen, M.T.; Petersen, S.B. Activation energy of light induced isomerization of resveratrol. J. Fluoresc., 2011, 21(5), 1897-1906.
[57]
Müller, R.H.; Radtke, M.; Wissing, S.A. Nanostructured lipid matrices for improved microencapsulation of drugs. Int. J. Pharm., 2002, 242(1-2), 121-128.
[58]
Vijayakumar, M.R.; Vajanthri, K.Y.; Balavigneswaran, C.K.; Mahto, S.K.; Mishra, N.; Muthu, M.S.; Singh, S. Pharmacokinetics, biodistribution, in vitro cytotoxicity and biocompatibility of Vitamin E TPGS coated trans resveratrol liposomes. Colloids Surf. B, 2016, 145, 479-491.
[59]
Yourick, J.J.; Koenig, M.L.; Yourick, D.L.; Bronaugh, R.L. Fate of chemicals in skin after dermal application: Does the in vitro skin reservoir affect the estimate of systemic absorption? Toxicol. Appl. Pharmacol., 2004, 195, 309-320.
[60]
Williams, F.M. In vitro studies show good are they at replacing in vivo studies for measurement of skin absorption? EnViron. Toxicol. Chem., 2006, 21, 199-203.