Generic placeholder image

Drug Delivery Letters

Editor-in-Chief

ISSN (Print): 2210-3031
ISSN (Online): 2210-304X

Research Article

Evaluation of Skin Permeability of Resveratrol Loaded Liposomes and Nanostructured Lipid Carriers using a Skin Mimic Artificial Membrane (skin-PAMPA)

Author(s): Marta Casamonti, Vieri Piazzini, Anna Rita Bilia and Maria Camilla Bergonzi*

Volume 9, Issue 2, 2019

Page: [134 - 145] Pages: 12

DOI: 10.2174/2210303109666190207152927

Price: $65

Abstract

Background: The skin-PAMPA test is a quick and relatively deep tool in the early stages of drug discovery and formulation of dermal and transdermal delivery systems.

Objective: This study focused on the application of the skin-PAMPA test to evaluate the permeation of Resveratrol (RSV) and also of two formulations, Liposomes (LP) and Nanostructured Lipid Carriers (NLC), prepared to improve RSV topical delivery.

Methods: LP and NLC were physically and chemically characterized. Stability and in vitro release studies were also assessed in different pH media. The release results were applied to define the kinetic and mechanism of RSV release from the LP and NLC formulations. In vitro permeability was estimated through the skin-PAMPA and the antioxidant capacity was evaluated by DPPH test.

Results: Nanoparticles have a spherical shape, dimensions suitable for skin application, and narrow size distribution. Encapsulation efficiency was 96.5% ± 2.1 for LP and 86.0% ± 2.4 for NLC. The formulations increased RSV solubility. Nanoparticles showed excellent physical and chemical stability during storage at 4°C for two months. In vitro release studies were performed at pH 5.5 and 7.4. The nanoparticles achieved a prolonged release of RSV. Skin-PAMPA proved an increased cutaneous permeability of RSV when loaded into LP or NLC. Both formulations maintained the antioxidant capacity of RSV, as evidenced by DPPH test.

Conclusion: LP and NLC could be applied as drug delivery systems suitable for the topical delivery of the RSV. Skin-PAMPA has proved to be an effective tool for studying the permeability not only of the RSV but also of its formulations.

Keywords: Skin-PAMPA, topical delivery, resveratrol, liposome, nanostructured lipid carriers, DPPH test.

Graphical Abstract

[1]
Kansy, M.; Senner, F.; Gubernator, K. Physicochemical high throughput screening: Parallel artificial membrane permeation assay in the description of passive absorption processes. J. Med. Chem., 1998, 41, 1007-1010.
[2]
Petit, C.; Bujard, A.; Skalicka-Wozniak, K.; Cretton, S.; Houriet, J.; Christen, P.; Carrupt, P.A. Wolfender, J.L. Prediction of the passive intestinal absorption of medicinal plant extract constituents with the Parallel Artificial Membrane Permeability Assay (PAMPA). Planta Med., 2016, 82, 424-431.
[3]
Piazzini, V.; Bigagli, E.; Luceri, C.; Bilia, A.R.; Bergonzi, M.C. Enhanced solubility and permeability of Salicis cortex extract by formulating as Microemulsion. Planta Med., 2018, 84(12-13), 976-984.
[4]
Graverini, G.; Piazzini, V.; Landucci, E.; Casamenti, F.; Pantano, D.; Pellegrini-Giampietro, D.; Bilia, A.R.; Bergonzi, M.C. Preparation of solid lipid nanoparticles for the delivery of Andrographolide across the blood-brain barrier: In vitro and in vivo evaluations. Colloids Surf. B, 2018, 161, 302-313.
[5]
Piazzini, V.; Rosseti, C.; Bigagli, E.; Luceri, C.; Bilia, A.R.; Bergonzi, M.C. Prediction of permeation and cellular transport of Silybum marianum extract formulated in nanoemulsion by using PAMPA and Caco-2 cell models. Planta Med., 2017, 83, 1184-1193.
[6]
Piazzini, V.; Monteforte, E.; Luceri, C.; Bigagli, E.; Bilia, A.R.; Bergonzi, M.C. Nanoemulsion for improving oral bioavailability of Vitex agnus castus extract: Formulation and in vitro evaluation using PAMPA and Caco-2 approaches. Drug Deliv., 2017, 24, 380-390.
[7]
Righeschi, C.; Bergonzi, M.C.; Isacchi, B.; Bazzicalupi, C.; Gratteri, P.; Bilia, A.R. Enhanced curcumin permeability by SLN formulation: The PAMPA approach. LWT - Food Sci. Techn., 2016, 66, 475-483.
[8]
Bergonzi, M.C.; Hamdouch, R.; Mazzacuva, F.; Isacchi, B.; Bilia, A.R. Optimization, characterization and in vitro evaluation of curcumin microemulsions. LWT-Food Sci. Techn, 2014, 59, 148-155.
[9]
Piazzini, V.; Landucci, E.; Graverini, G.; Pellegrini-Giampietro, D.E.; Bilia, A.R.; Bergonzi, M.C. Stealth and cationic nanoliposomes as drug delivery systems to increase andrographolide BBB permeability. Pharmaceutics, 2018, 10, 128.
[10]
Ottaviani, G.; Martel, S.; Carrupt, P.A. Parallel artificial membrane permeability assay: A new membrane for the fast prediction of passive human skin permeability. J. Med. Chem., 2006, 49(13), 3948-3954.
[11]
Avdeef, A. The rise of PAMPA. Expert Opin. Drug Metab. Toxicol., 2005, 1, 325-342.
[12]
Avdeef, A.; Bendels, S.; Di, L.; Faller, B.; Kansy, M.; Sugano, K.; Yamauchi, Y. PAMPA: Critical factors for better prediction of absorption. J. Pharm. Sci., 2007, 96, 2893-2909.
[13]
Avdeef, A.; Tsinman, O. PAMPA -a drug absorption in vitro model: 13. Chemical selectivity due to membrane hydrogen bonding: In combo comparison of HDM-, DOPC-, and DS-PAMPA models. Eur. J. Pharm. Sci., 2006, 28, 43-50.
[14]
Tsinman, O.; Tsinman, K.; Sun, N.; Avdeef, A. Physicochemical selectivity of the BBB microenvironment governing passive diffusion–matching with a porcine brain lipid extract artificial membrane permeability model. Pharm. Res., 2011, 28, 337-363.
[15]
Di, L.; Kerns, E.H.; Fan, K.; McConnell, O.J.; Carter, G.T. High throughput artificial membrane permeability assay for blood-brain barrier. Eur. J. Med. Chem., 2003, 38, 223-232.
[16]
Dobricic´, V.; Markovic´, B.; Nikolic, K.; Savic´, V.; Vladimirov, S.; Cudina, O. 17b-carboxamide steroids in vitro prediction of human skin permeability and retention using PAMPA technique. Eur. J. Pharm. Sci., 2014, 52, 95-108.
[17]
Sinkó, B.; Kökösi, J.; Avdeef, A.; Takács-Novák, K. A PAMPA study of the permeability-enhancing effect of new ceramide analogues. Chem. Biodiv., 2009, 6, 1867-1874.
[18]
Sinkó, B.; Garrigues, T.M.; Balogh, G.T.; Nagy, Z.K.; Tsinman, O.; Avdeef, A.; Takács-Novák, K. Skin–PAMPA: A new method for fast prediction of skin penetration. Eur. J. Pharm. Sci., 2012, 45, 698-707.
[19]
Sinkó, B.; Vizserálek, G.; Takács-Novák, K. Skin PAMPA: Application in practice. ADMET & DMPK, 2014, 2(4), 191-198.
[20]
Fasano, W.J.; Berge, W.F.; Banton, M.I.; Heneweer, M.; Moore, N.P. Dermal penetration of propylene glycols: Measured absorption across human abdominal skin in vitro and comparison with a QSAR model. Toxicol. In Vitro, 2011, 25, 1664-1670.
[21]
Escuder-Gilabert, L.; Martínez-Pla, J.J.; Sagrado, S.; Villanueva-Camañas, R.M.; Medina-Hernández, M.J. Biopartitioning micellar separation methods: Modelling drug absorption. J. Chromatogr. B., 2003, 797, 21-35.
[22]
Todo, H.; Kimura, E.; Yasuno, H.; Tokudome, Y.; Hashimoto, F.; Ikarashi, Y.; Sugibayashi, K. Permeation pathway of macromolecules and nanospheres through skin. Biol. Pharm. Bull., 2010, 33(8), 1394-1399.
[23]
Yoshimatsu, H.; Ishii, K.; Konno, Y.; Satsukawa, M.; Yamashita, S. Prediction of human percutaneous absorption from in vitro and in vivo animal experiments. Int. J. Pharm., 2017, 534(1-2), 348-355.
[24]
Mathes, S.H.; Ruffner, H.; Graf-Hausner, U. The use of skin models in drug development. Adv. Drug Deliv. Rev., 2014, 69, 81-102.
[25]
Khan, G.M.; Frum, Y.; Sarheed, O.; Eccleston, G.M.; Meidan, V.M. Assessment of drug permeability distributions in two different model skins. Int. J. Pharm., 2005, 303(1-2), 81-87.
[26]
Tsinman, K.; Tsinman, O.; Schalau, G.; Aliyar, H.; Huber, R.; Loubert, G. Application of skin PAMPA to differentiate between topical pharmaceutical formulations of ibuprofen. (R6058) in AAPS Annual Meeting and Exposition, 2012.Chicago
[27]
Vizseralek, G.; Sinkó, B.; Tsinman, K.; Takács-Novák, K. Developing a method for skin pampa to test transdermal patches. (M1237) in AAPS Annual Meeting and Exposition, 2014.San Diego
[28]
Bhat, K.P.L.; Kosmeder, J.W.; Pezzuto, J.M. Biological effects of resveratrol. Antioxid. Redox Signal., 2001, 3, 1041-1064.
[29]
Gambini, J.; Inglés, M.; Olaso, G.; Lopez-Grueso, R.; Bonet-Costa, V.; Gimeno-Mallench, L.; Mas-Bargues, C.; Abdelaziz, K.M.; Gomez-Cabrera, M.C.; Vina, J.; Borras, C. Properties of resveratrol: In vitro and in vivo studies about metabolism, bioavailability, and biological effects in animal models and humans. Oxid. Med. Cell. Longev., 2015, 2015, 1-13, 837042.
[30]
Ndiaye, M.; Philippe, C.; Mukhtara, H.; Ahmada, N. The grape antioxidant resveratrol for skin disorders: Promise, prospects, and challenges. Arch. Biochem. Biophys., 2011, 508, 164-170.
[31]
Baxter, R.A. Anti-aging properties of resveratrol: Review and report of a potent new antioxidant skin care formulation. J. Cosmet. Dermatol., 2008, 7, 2-7.
[32]
Sinico, C.; Pireddu, R.; Pini, E.; Valenti, D.; Caddeo, C.; Fadda, A.M.; Lai, F. Enhancing topical delivery of resveratrol through a nanosizing approach. Planta Med., 2017, 83, 476-481.
[33]
Jain, S.; Patel, N.; Shah, M.K.; Khatri, P.; Vora, N. Recent advances in lipid-based vesicles and particulate carriers for topical and transdermal application. J. Pharm., 2017, 106(2), 423-445.
[34]
Jain, S.; Patel, N.; Madan, P.; Lin, S. Quality by design approach for formulation, evaluation and statistical optimization of diclofenac-loaded ethosomes via transdermal route. Pharm. Dev. Technol., 2015, 20(4), 473-489.
[35]
Chen, Y.; Wu, Q.; Zhang, Z.; Yuan, L.; Liu, X.; Zhou, L. Preparation of curcumin-loaded liposomes and evaluation of their skin permeation and pharmacodynamics. Molecules, 2012, 17(5), 5972-5987.
[36]
Hua, S. Development of an effective topical liposomal formulation for localized analgesia and anti-inflammatory actions in the complete freund’s adjuvant rodent model of acute inflammatory pain. Pain Physician, 2014, 17, E719-E735.
[37]
Ning, M.; Guo, Y.; Pan, H.; Chen, X.; Gu, Z. Preparation, in vitro and in vivo evaluation of liposomal/niosomal gel delivery systems for clotrimazole. Drug Dev. Ind. Pharm., 2005, 31(4-5), 375-383.
[38]
Dorrani, M.; Garbuzenko, O.B.; Minko, T.; Michniak-Kohn, B. Development of edge-activated liposomes for siRNA delivery to human basal epidermis for melanoma therapy. J. Control. Release, 2016, 228, 150-158.
[39]
Bangham, A.D.; Standish, M.M.; Watkins, J.C. Diffusion of univalent ions across the lamellae of swollen phospholipids. J. Mol. Biol., 1965, 13, 238-252.
[40]
Kwon, S.S.; Kim, S.Y.; Kong, B.J.; Kim, K.J.; Noh, G.Y.; Im, N.R.; Park, S.N. Cell penetrating peptide conjugated liposomes as transdermal delivery system of Polygonum aviculare L. extract. Int. J. Pharm., 2015, 483(1-2), 26-37.
[41]
Fang, J.Y.; Fang, C.L.; Liu, C.H.; Su, Y.H. Lipid nanoparticles as vehicles for topical psoralen delivery: solid lipid nanoparticles (SLN) versus nanostructured lipid carriers (NLC). Eur. J. Pharm. Biopharm., 2008, 70(2), 633-640.
[42]
Ravani, L.; Esposito, E.; Bories, C.; Lievin-Le Moal, V.; Loiseau, P.M.; Djabourov, M.; Bouchemal, K. Clotrimazole-loaded nanostructured lipid carrier hydrogels: Thermal analysis and in vitro studies. Int. J. Pharm., 2013, 454(2), 695-702.
[43]
Brugè, F.; Damiani, E.; Puglia, C.; Offerta, A.; Armeni, T.; Littarru, G.P.; Tiano, L. Nanostructured lipid carriers loaded with CoQ10: effect on human dermal fibroblasts under normal and UVA-mediated oxidative conditions. Int. J. Pharm., 2013, 455(1-2), 348-356.
[44]
Kawadkar, J.; Pathak, A.; Kishore, R.; Chauhan, M.K. Formulation, characterization and in vitro–in vivo evaluation of flurbiprofen-loaded nanostructured lipid carriers for transdermal delivery. Drug Dev. Ind. Pharm., 2013, 39(4), 569-578.
[45]
Pople, P.V.; Singh, K.K. Development and evaluation of colloidal modified nanolipid carrier: Application to topical delivery of tacrolimus, Part II–In vivo assessment, drug targeting, efficacy, and safety in treatment for atopic dermatitis. Eur. J. Pharm. Biopharm., 2013, 84(1), 72-83.
[46]
Pardeike, J.; Hommoss, A.; Müller, R.H. Lipid nanoparticles (SLN, NLC) in cosmetic and pharmaceutical dermal products. Int. J. Pharm., 2009, 366(1-2), 170-184.
[47]
Shrotriya, S.N.; Ranpise, N.S.; Vidhate, B.V. Skin targeting of resveratrol utilizing solid lipid nanoparticle-engrossed gel for chemically induced irritant contact dermatitis. Drug Deliv. Transl. Res., 2017, 7, 37-52.
[48]
Mendes, A.I.; Silva, A.C.; Catita, J.A.M.; Cerqueira, F.; Gabriel, C.; Lopes, C.M. Miconazole-loaded nanostructured lipid carriers (NLC) for local delivery to the oral mucosa: Improving antifungal activity. Colloids Surf. B, 2013, 111, 755-763.
[49]
Sjöström, B.; Kaplun, A.; Talmon, Y.; Cabane, B. Structures of nanoparticles prepared from oil-in-water emulsions. Pharm. Res., 1995, 12(1), 39-48.
[50]
Markovic, B.D.; Vladimirov, S.M.; Cudina, O.A.; Odovic, J.V.; Karljikovic-Rajic, K.D. A PAMPA assay as fast predictive model of passive human skin permeability of new synthesized corticosteroid C-21 esters. Molecules, 2012, 17(1), 480-491.
[51]
Dubes, A.; Parrot-Lopez, H.; Abdelwahed, W.; Degobert, G.; Fessi, H.; Shahgaldian, P.; Coleman, A.W. Scanning electron microscopy and atomic force microscopy imaging of solid lipid nanoparticles derived from amphiphilic cyclodextrins. Eur. J. Pharm. Biopharm., 2003, 55(3), 279-282.
[52]
Zhang, W.; Fei, Z.; Zhen, H.N.; Zhang, J.N.; Zhang, X. Resveratrol inhibits cell growth and induces apoptosis of rat C6 glioma cells. J. Neurooncol., 2007, 81(3), 231-240.
[53]
Severino, P.; Pinho, S.C.; Souto, E.B.; Santana, M.H. Polymorphism, crystallinity and hydrophilic–lipophilic balance of stearic acid and stearic acid–capric/caprylic triglyceride matrices for production of stable nanoparticles. Colloids Surf. B, 2011, 86(1), 125-130.
[54]
Caddeo, C.; Manconi, M.; Valenti, D.; Maccioni, A.M.; Fadda, A.M.; Sinico, C. The role of Labrasol® in the enhancement of the cutaneous bioavailability of minoxidil in phospholipid vesicles. Res. J. Pharm. Technol, 2012, 5, 1563-1569.
[55]
Caprylocaproyl polyoxylglyceride (Labrasol) US Pharmacopoeias USP 28-NF 23, suppl 1 IIG/EP 2005.
[56]
Figueiras, T.S.; Neves-Petersen, M.T.; Petersen, S.B. Activation energy of light induced isomerization of resveratrol. J. Fluoresc., 2011, 21(5), 1897-1906.
[57]
Müller, R.H.; Radtke, M.; Wissing, S.A. Nanostructured lipid matrices for improved microencapsulation of drugs. Int. J. Pharm., 2002, 242(1-2), 121-128.
[58]
Vijayakumar, M.R.; Vajanthri, K.Y.; Balavigneswaran, C.K.; Mahto, S.K.; Mishra, N.; Muthu, M.S.; Singh, S. Pharmacokinetics, biodistribution, in vitro cytotoxicity and biocompatibility of Vitamin E TPGS coated trans resveratrol liposomes. Colloids Surf. B, 2016, 145, 479-491.
[59]
Yourick, J.J.; Koenig, M.L.; Yourick, D.L.; Bronaugh, R.L. Fate of chemicals in skin after dermal application: Does the in vitro skin reservoir affect the estimate of systemic absorption? Toxicol. Appl. Pharmacol., 2004, 195, 309-320.
[60]
Williams, F.M. In vitro studies show good are they at replacing in vivo studies for measurement of skin absorption? EnViron. Toxicol. Chem., 2006, 21, 199-203.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy