[1]
Barancheshme, F.; Munir, M. Strategies to combat antibiotic resistance in the wastewater treatment plants. Front. Microbiol., 2018.
[2]
Rizzo, L.; Manaia, C.; Merlin, C.; Schwartz, T.; Dagot, C.; Ploy, M.C.; Michael, I.; Fatta-Kassinos, D. Urban wastewater treatment plants as hotspots for antibiotic resistant bacteria and genes spread into the environment: A review. Sci. Total Environ., 2013, 447, 345-360.
[3]
Baquero, F.; Martínez, J-L.; Cantón, R. Antibiotics and antibiotic resistance in water environments. Curr. Opin. Biotechnol., 2008, 19, 260-265.
[4]
Guo, J.; Li, J.; Chen, H.; Bond, P.L.; Yuan, Z. Metagenomic analysis reveals wastewater treatment plants as hotspots of antibiotic resistance genes and mobile genetic elements. Water Res., 2017, 123, 468-478.
[5]
Czekalski, N.; Sigdel, R.; Birtel, J.; Matthews, B.; Bürgmann, H. Does human activity impact the natural antibiotic resistance background? abundance of antibiotic resistance genes in 21 swiss lakes. Environ. Int., 2015, 81, 45-55.
[6]
Ben, W.; Wang, J.; Cao, R.; Yang, M.; Zhang, Y.; Qiang, Z. distribution of antibiotic resistance in the effluents of ten municipal wastewater treatment plants in china and the effect of treatment processes. Chemosphere, 2017, 172, 392-398.
[7]
Audenaert, W.T.M.; Chys, M.; Auvinen, H.; Dumoulin, A.; Rousseau, D.; Van Hulle, S.W.H. (Future) regulation of trace organic compounds in WWTP effluents as a driver for advanced wastewater treatment. Ozone News, 2014, 42, 17-23.
[8]
Abegglen, C.; Siegrist, H. Micropolluants Dans Les Eaux Usées Urbaines. Etape de Traitement Supplémentaire Dans Les Stations d’épuration, Connaissance de l'environnement no. 1214; Office fédéral
de l’environnement: Bern. 2012.
[9]
Östman, M.; Björlenius, B.; Fick, J.; Tysklind, M. Effect of full-scale ozonation and pilot-scale granular activated carbon on the removal of biocides, antimycotics and antibiotics in a sewage treatment plant. Sci. Total Environ., 2019, 193, 163-171.
[10]
Altmann, J.; Ruhl, A.S.; Zietzschmann, F.; Jekel, M. Direct comparison of ozonation and adsorption onto powdered activated carbon for micropollutant removal in advanced wastewater treatment. Water Res., 2014, 55, 185-193.
[11]
Kårelid, V.; Larsson, G.; Björlenius, B. Pilot-scale removal of pharmaceuticals in municipal wastewater: comparison of granular and powdered activated carbon treatment at three wastewater treatment plants. J. Environ. Manage., 2017, 193, 491-502.
[12]
Margot, J.; Kienle, C.; Magnet, A.; Weil, M.; Rossi, L.; de Alencastro, L.F.; Abegglen, C.; Thonney, D.; Chèvre, N.; Schärer, M.; Barry, D.A.A. Treatment of micropollutants in municipal wastewater: Ozone or powdered activated carbon? Sci. Total Environ., 2013, 461-462, 480-498.
[13]
Schaffner, M.; Studer, P.; Ramseier, C. Evaluation Des Eaux de
Baignade. Recommandations Concernant l’analyse et l’évaluation
de La Qualité Des Eaux de Baignade (Lacs et Rivières); Connaissance
de l'environnement no. 1310; Office fédéral de
l’environnement: Bern. , 2013.
[14]
Krahnstöver, T.; Wintgens, T. Separating Powdered Activated Carbon (PAC) from wastewater - technical process options and Assessment of removal efficiency. J. Environ. Chem. Eng., 2018, 6, 5744-5762.
[15]
Zwickenpflug, B.; Böhler, M.; Siegrist, H.; Behl, M.; Neuenschwanden, S.; Joss, A.; Sterkele, B.; Dorusch, F.; Hollender, J. Einsatz von Pulveraktivkohle Zur Elimination von Mikroverunreinigungen
Aus Kommunalem Abwasser 3. Zwischenbericht; Eidgenössische
Anstalt für Wasserversorgung, Abwasserreinigung und
Gewässerschutz (EAWAG): Dübendorf, 2009.
[16]
Meinel, F.; Zietzschmann, F.; Ruhl, A.S.; Sperlich, A.; Jekel, M. The benefits of powdered activated carbon recirculation for micropollutant removal in advanced wastewater treatment. Water Res., 2016, 91, 97-103.
[17]
Böhler, M.; Zwickenpflug, B.; Hollender, J.; Ternes, T.; Joss, A.; Siegrist, H. Removal of micropollutants in municipal wastewater treatment plant by powder-activated carbon. Water Sci. Technol., 2012, 66, 2115-2121.
[18]
Margot, T.; Magnet, A.; Thonney, D.; Chèvre, N.; de Alencastro, F.; Rossi, L. Traitement Des Micropolluants Dans Les Eaux Usées
Aide a La Conception Des Ouvrages, Ville de Lausanne ed.; Ville
de Lausanne: Lausanne. 2011.
[19]
Zwickenpflug, B.; Böhler, M.; Sterkele, B.; Joss, A.; Siegrist, H.; Traber, J.; Gujer, W.; Behl, M.; Dorusch, F.; Hollender, J. Einsatz
von Pulveraktivkohle Zur Elimination von Mikroverunreinigungen
Aus Dem Abwasser - Abschlussbericht, Eidgenössische Anstalt für
Wasserversorgung, Abwasserreinigung und Gewässerschutz (EAWAG):
Dübendorf. 2010.
[20]
Zhang, J.; Mao, F.; Loh, K.C.; Gin, K.Y.H.; Dai, Y.; Tong, Y.W. Evaluating the effects of activated carbon on methane generation and the fate of antibiotic resistant genes and class i integrons during anaerobic digestion of solid organic wastes. Bioresour. Technol., 2018, 249, 729-736.
[22]
CDALED. Rapporto Annuale 2016, Consorzio Depurazione Acque
Lugano e Dintorni: Bioggio. 2016.
[23]
Standard Methods for the Examination of Water and Wastewater, 20th ed; American Public Health Association: Washington, DC, 1998.
[24]
Musovic, S.; Oregaard, G.; Kroer, N.; Sørensen, S.J. Cultivation-independent examination of horizontal transfer and host range of an IncP-1 plasmid among gram-positive and gram-negative bacteria indigenous to the barley rhizosphere. Appl. Environ. Microbiol., 2006, 72, 6687-6692.
[25]
Bottinelli, M.C. Approche moléculaire à l'étude des bactéries sulfato-
réductrices et des Archaea méthanogènes dans les sédiments
des lacs Cadagno et Rotsee., PhD Thesis, Geneva University:
Genève, January 2008.
[26]
Koch, B.; Jensen, L.E.; Nybroe, O. A panel of Tn7-based vectors for insertion of the gfp marker gene or for delivery of cloned dna into gram-negative bacteria at a neutral chromosomal site. J. Microbiol. Methods, 2001, 45, 187-195.
[27]
Rochat, L.; Péchy-Tarr, M.; Baehler, E.; Maurhofer, M.; Keel, C. Combination of fluorescent reporters for simultaneous monitoring of root colonization and antifungal gene expression by a biocontrol pseudomonad on cereals with flow cytometry. Mol. Plant Microbe Interact., 2010, 23, 949-961.
[28]
Green, M.; Sambrock, J. Molecular Cloning: A Laboratory Manual, 4th ed; Cold Spring Harbor Laboratory Press: Cold Spring Harbor, NY, 2012.
[29]
Lohberger, A.; Coste, A.T.; Sanglard, D. Distinct roles of Candida albicans drug resistance transcription factors TAC1, MRR1, and UPC2 in virulence. Eukaryot. Cell, 2014, 13, 127-142.
[30]
Nettmann, E.; Fröhling, A.; Heeg, K.; Klocke, M.; Schlüter, O.; Mumme, J. Development of a flow-fluorescence in situ hybridization protocol for the analysis of microbial communities in anaerobic fermentation liquor. BMC Microbiol., 2013, 13, 278-293.
[31]
Orruño, M.; Garaizabal, I.; Arana, I.; Barcina, I. Validation of a sonication-based method for bacterial dislodgement from flocs. J. Microbiol. Res., 2013, 3, 208-212.
[33]
George, I.; Crop, P.; Servais, P. Fecal coliform removal in wastewater treatment plants studied by plate counts and enzymatic methods. Water Res., 2002, 36, 2607-2617.
[34]
Ferreira Da Silva, M.; Tiago, I.; Onio Veríssimo, A.; Boaventura, R.A.R.; Nunes, O.C.; Manaia, M. Antibiotic resistance of enterococci and related bacteria in an Urban wastewater treatment plant. FEMS Microbiol. Ecol., 2006, 55, 322-329.
[35]
Wolff, D.; Krah, D.; Dötsch, A.; Ghattas, A.K.; Wick, A.; Ternes, T.A. Insights into the variability of microbial community composition and micropollutant degradation in diverse biological wastewater treatment systems. Water Res., 2018, 143, 313-324.
[36]
Cydzik-Kwiatkowska, A.; Zielińska, M. Bacterial communities in full-scale wastewater treatment systems. World J. Microbiol. Biotechnol., 2016, 32, 1-8.
[37]
Sidhu, C.; Vikram, S.; Pinnaka, A.K. Unraveling the microbial interactions and metabolic potentials in pre- and post-treated sludge from a wastewater treatment plant using metagenomic studies. Front. Microbiol., 2017, 8, 1-10.
[38]
Laht, M.; Karkman, A.; Voolaid, V.; Ritz, C.; Tenson, T.; Virta, M.; Kisand, V. Abundances of tetracycline, sulphonamide and beta-lactam antibiotic resistance genes in conventional Wastewater Treatment Plants (WWTPs) with Different Waste Load. PLoS One, 2014, 9(8), 1-8.
[39]
Krzeminski, P.; Tomei, M.C.; Karaolia, P.; Langenhoff, A.; Almeida, C.M.R.; Felis, E.; Gritten, F.; Andersen, H.R.; Fernandes, T.; Manaia, C.M.; Rizzo, L.; Fatta-Kassinos, D. Performance of secondary wastewater treatment methods for the removal of contaminants of emerging concern implicated in crop uptake and antibiotic resistance spread: A review. Sci. Total Environ., 2019, 648, 1052-1081.
[40]
Yu, F.; Li, Y.; Han, S.; Ma, J. Adsorptive removal of antibiotics from aqueous solution using carbon materials. Chemosphere, 2016, 153, 365-385.
[41]
Weber, W.J.; Pirbazari, M.; Melson, G.L. Biological growth on activated carbon: An investigation by scanning electron microscopy. Environ. Sci. Technol., 1978, 12(7), 817-819.
[42]
Kaarela, O.E.; Härkki, H.A.; Palmroth, M.R.T.; Tuhkanen, T.A. Bacterial diversity and active biomass in full-scale granular activated carbon filters operated at low water temperatures. Environ. Technol. (United Kingdom), 2015, 36(6), 681-682.
[43]
Pradhan, B.K.; Sandle, N.K. Effect of different oxidizing agent treatments on the surface properties of activated carbons. Carbon, 1999, 37, 1323-1332.
[44]
Daifullah, A.A.; Girgis, B.; Gad, H.M. A study of the factors affecting the removal of humic acid by activated carbon prepared from biomass material. Colloids Surf. A Physicochem. Eng. Asp., 2004, 235, 1-10.
[45]
Şengül, A.; Ersan, G.; Tüfekçi, N. Removal of intra- and extracellular microcystin by Submerged Ultrafiltration (UF) membrane combined with coagulation/flocculation and Powdered Activated Carbon (PAC) Adsorption. J. Hazard. Mater., 2018, 343, 29-35.
[46]
Abebe, L.S.; Chen, X.; Sobsey, M.D. Chitosan coagulation to improve microbial and turbidity removal by ceramic water filtration for household drinking water treatment. Int. J. Environ. Res. Public Health, 2016, 13, 1-11.
[47]
Yang, Z.; Degorce-Dumas, J.R.; Yang, H.; Guibal, E.; Li, A.; Cheng, R. flocculation of Escherichia coli using a quaternary ammonium salt grafted carboxymethyl chitosan flocculant. Environ. Sci. Technol., 2014, 48, 6867-6873.
[48]
Li, N.; Sheng, G.P.; Lu, Y.Z.; Zeng, R.J.; Yu, H.Q. Removal of antibiotic resistance genes from wastewater treatment plant effluent by coagulation. Water Res., 2017, 111, 204-212.
[49]
Teh, C.Y.; Budiman, P.M.; Shak, K.P.Y.; Wu, T.Y. Recent advancement of coagulation-flocculation and its application in wastewater treatment. Ind. Eng. Chem. Res., 2016, 55, 4363-4389.