[1]
Wynn TA. Cellular and molecular mechanisms of fibrosis. J Pathol 2008; 214(2): 199-210.
[2]
Ingber DE. Mechanical control of tissue morphogenesis during embryological development. Int J Dev Biol 2006; 50(2-3): 255-66.
[3]
Place ES, Evans ND, Stevens MM. Complexity in biomaterials for tissue engineering. Nat Mater 2009; 8(6): 457-70.
[4]
Hubbell JA. Biomaterials in tissue engineering. Biotechnology (N Y) 1995; 13(6): 565-76.
[5]
Leijten J, Khademhosseini A. From Nano to Macro: Multiscale Materials for Improved Stem Cell Culturing and Analysis. Cell Stem Cell 2016; 18(1): 20-4.
[6]
Leijten J, Rouwkema J, Zhang YS, Nasajpour A, Dokmeci MR, Khademhosseini A. Advancing Tissue Engineering: A Tale of Nano-, Micro-, and Macroscale Integration. Small 2016; 12(16): 2130-45.
[7]
Jabbari E, Leijten J, Xu Q, Khademhosseini A. The matrix reloaded: the evolution of regenerative hydrogels. Mater Today 2015; 19(4): 190-6.
[8]
Alsberg E, von Recum HA, Mahoney MJ. Environmental cues to guide stem cell fate decision for tissue engineering applications. Expert Opin Biol Ther 2006; 6(9): 847-66.
[9]
Ricca BL, Venugopalan G, Fletcher DA. To pull or be pulled: parsing the multiple modes of mechanotransduction. Curr Opin Cell Biol 2013; 25(5): 558-64.
[10]
Bursac N, Papadaki M, Cohen RJ, et al. Cardiac muscle tissue engineering: toward an in vitro model for electrophysiological studies. Am J Physiol 1999; 277(2): H433-44.
[11]
Lutolf MP, Hubbell JA. Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat Biotechnol 2005; 23(1): 47-55.
[12]
Leijten J, Seo J, Yue K, et al. Spatially and temporally controlled hydrogels for tissue engineering. Mater Sci Eng Rep 2017; 119: 1-35.
[13]
Fernandes TG, Diogo MM, Clark DS, Dordick JS, Cabral JMS. High-throughput cellular microarray platforms: applications in drug discovery, toxicology and stem cell research. Trends Biotechnol 2009; 27(6): 342-9.
[14]
Chin VI, Taupin P, Sanga S, Scheel J, Gage FH, Bhatia SN. Microfabricated platform for studying stem cell fates. Biotechnol Bioeng 2004; 88(3): 399-415.
[15]
Seo J, Shin J-Y, Leijten J, et al. High-throughput approaches for screening and analysis of cell behaviors. Biomaterials 2018; 153: 85-101.
[16]
Yang C, Tibbitt MW, Basta L, Anseth KS. Mechanical memory and dosing influence stem cell fate. Nat Mater 2014; 13(6): 645-52.
[17]
Mahlstedt MM, Anderson D, Sharp JS, et al. Maintenance of pluripotency in human embryonic stem cells cultured on a synthetic substrate in conditioned medium. Biotechnol Bioeng 2010; 105(1): 130-40.
[18]
Lund AW, Yener B, Stegemann JP, Plopper GE. The natural and engineered 3D microenvironment as a regulatory cue during stem cell fate determination. Tissue Eng Part B Rev 2009; 15(3): 371-80.
[19]
Jarrahy R, Huang W, Rudkin GH, et al. Osteogenic differentiation is inhibited and angiogenic expression is enhanced in MC3T3-E1 cells cultured on three-dimensional scaffolds. Am J Physiol Cell Physiol 2005; 289(2): C408-14.
[20]
Seo J, Lee S, Lee J, Lee T. Guided transport of water droplets on superhydrophobic-hydrophilic patterned Si nanowires. ACS Appl Mater Interfaces 2011; 3(12): 4722-9.
[21]
Neto AI, Demir K, Popova AA, Oliveira MB, Mano JF, Levkin PA. Fabrication of Hydrogel Particles of Defined Shapes Using Superhydrophobic-Hydrophilic Micropatterns. Adv Mater 2016; 28(35): 7613-9.
[22]
Dolatshahi-Pirouz A, Nikkhah M, Gaharwar AK, et al. A combinatorial cell-laden gel microarray for inducing osteogenic differentiation of human mesenchymal stem cells. Sci Rep 2014; 4: 3896.
[23]
Gobaa S, Hoehnel S, Roccio M, Negro A, Kobel S, Lutolf MP. Artificial niche microarrays for probing single stem cell fate in high throughput. Nat Methods 2011; 8(11): 949-55.
[24]
Lee M-Y, Kumar RA, Sukumaran SM, Hogg MG, Clark DS, Dordick JS. Three-dimensional cellular microarray for high-throughput toxicology assays. Proc Natl Acad Sci USA 2008; 105(1): 59-63.
[25]
Hull R, Chraska T, Liu Y, Longo D. Microcontact printing: new mastering and transfer techniques for high throughput, resolution and depth of focus. Mater Sci Eng C 2002; 19(1): 383-92.
[26]
Seong TW, Seo J, Lee KH. Full length histone H3 conjugated electrochemical biosensor for extracellular proteolytic Cathepsin L activity detection. Sens Actuators B Chem 2018; 267: 237-44.
[27]
Oliveira MB, Salgado CL, Song W, Mano JF. Combinatorial on-chip study of miniaturized 3D porous scaffolds using a patterned superhydrophobic platform. Small 2013; 9(5): 768-78.
[28]
Flaim CJ, Teng D, Chien S, Bhatia SN. Combinatorial signaling microenvironments for studying stem cell fate. Stem Cells Dev 2008; 17(1): 29-39.
[29]
Flaim CJ, Chien S, Bhatia SN. An extracellular matrix microarray for probing cellular differentiation. Nat Methods 2005; 2(2): 119-25.
[30]
Mei Y, Saha K, Bogatyrev SR, et al. Combinatorial development of biomaterials for clonal growth of human pluripotent stem cells. Nat Mater 2010; 9(9): 768-78.
[31]
Caiazzo M, Okawa Y, Ranga A, Piersigilli A, Tabata Y, Lutolf MP. Defined three-dimensional microenvironments boost induction of pluripotency. Nat Mater 2016; 15(3): 344-52.
[32]
Camci-Unal G, Cuttica D, Annabi N, Demarchi D, Khademhosseini A. Synthesis and characterization of hybrid hyaluronic acid-gelatin hydrogels. Biomacromolecules 2013; 14(4): 1085-92.
[33]
Jabbarzadeh E, Blanchette J, Shazly T, Khademhosseini A, Camci-Unal GT, Laurencin C. Vascularization of Biomaterials for Bone Tissue Engineering: Current Approaches and Major Challenges. Curr Angiogenes 2012; 1(3): 180-91.
[34]
Seo J, Lee JS, Lee K, et al. Switchable water-adhesive, superhydrophobic palladium-layered silicon nanowires potentiate the angiogenic efficacy of human stem cell spheroids. Adv Mater 2014; 26(41): 7043-50.
[35]
Ranga A, Gobaa S, Okawa Y, Mosiewicz K, Negro A, Lutolf MP. 3D niche microarrays for systems-level analyses of cell fate. Nat Commun 2014; 5: 4324.
[36]
Fernandes TG, Kwon SJ, Bale SS, et al. Three-dimensional cell culture microarray for high-throughput studies of stem cell fate. Biotechnol Bioeng 2010; 106(1): 106-18.
[37]
Meli L, Barbosa HS, Hickey AM, et al. Three dimensional cellular microarray platform for human neural stem cell differentiation and toxicology. Stem Cell Res (Amst) 2014; 13(1): 36-47.
[38]
Popova AA, Demir K, Hartanto TG, Schmitt E, Levkin PA. Droplet-microarray on superhydrophobic–superhydrophilic patterns for high-throughput live cell screenings. RSC Advances 2016; 6(44): 38263-76.
[39]
Li Y, Chen P, Wang Y, et al. Rapid Assembly of Heterogeneous 3D Cell Microenvironments in a Microgel Array. Adv Mater 2016; 28(18): 3543-8.
[40]
Shin S, Seo J, Han H, Kang S, Kim H, Lee T. Bio-Inspired Extreme Wetting Surfaces for Biomedical Applications. Materials (Basel) 2016; 9(2): 116.
[41]
Sahoo B, Yoon K, Seo J, Lee T. Chemical and Physical Pathways for Fabricating Flexible Superamphiphobic Surfaces with High Transparency Coatings 2018; 8(2).
[42]
Seo J, Lee S-K, Lee J, et al. Path-programmable water droplet manipulations on an adhesion controlled superhydrophobic surface. Sci Rep 2015; 5: 12326.
[43]
Leslie DC, Waterhouse A, Berthet JB, et al. A bioinspired omniphobic surface coating on medical devices prevents thrombosis and biofouling. Nat Biotechnol 2014; 32(11): 1134-40.
[44]
Oliveira MB, Mano JF. On-chip assessment of the protein-release profile from 3D hydrogel arrays. Anal Chem 2013; 85(4): 2391-6.
[45]
Salgado CL, Oliveira MB, Mano JF. Combinatorial cell-3D biomaterials cytocompatibility screening for tissue engineering using bioinspired superhydrophobic substrates. Integr Biol 2012; 4(3): 318-27.
[46]
Feng W, Li L, Du X, Welle A, Levkin PA. Single-Step Fabrication of High-Density Microdroplet Arrays of Low-Surface-Tension Liquids. Adv Mater 2016; 28(16): 3202-8.
[47]
Hirtz M, Feng W, Fuchs H, Levkin PA. Click‐Chemistry Immobilized 3D‐Infused Microarrays in Nanoporous Polymer Substrates. Adv Mater Interfaces 2016; 3(6): 1500469.
[48]
Molla MR, Levkin PA. Combinatorial Approach to Nanoarchitectonics for Nonviral Delivery of Nucleic Acids. Adv Mater 2016; 28(6): 1159-75.
[49]
Popova AA, Schillo SM, Demir K, Ueda E, Nesterov-Mueller A, Levkin PA. Droplet-Array (DA) Sandwich Chip: A Versatile Platform for High-Throughput Cell Screening Based on Superhydrophobic-Superhydrophilic Micropatterning. Adv Mater 2015; 27(35): 5217-22.
[50]
Barata D, van Blitterswijk C, Habibovic P. High-throughput screening approaches and combinatorial development of biomaterials using microfluidics. Acta Biomater 2016; 34: 1-20.
[51]
Domachuk P, Tsioris K, Omenetto FG, Kaplan DL. Bio-microfluidics: biomaterials and biomimetic designs. Adv Mater 2010; 22(2): 249-60.
[52]
Whitesides GM. The origins and the future of microfluidics. Nature 2006; 442(7101): 368-73.
[53]
Kim S, Kim HJ, Jeon NL. Biological applications of microfluidic gradient devices. Integr Biol 2010; 2(11-12): 584-603.
[54]
Berthier E, Beebe DJ. Gradient generation platforms: new directions for an established microfluidic technology. Lab Chip 2014; 14(17): 3241-7.
[55]
Byrd TF IV, Hoang LT, Kim EG, et al. The microfluidic multitrap nanophysiometer for hematologic cancer cell characterization reveals temporal sensitivity of the calcein-AM efflux assay. Sci Rep 2014; 4: 5117.
[56]
Awwad Y, Geng T, Baldwin AS, Lu C. Observing single cell NF-κB dynamics under stimulant concentration gradient. Anal Chem 2012; 84(3): 1224-8.
[57]
Ostrovidov S, Annabi N, Seidi A, et al. Controlled release of drugs from gradient hydrogels for high-throughput analysis of cell-drug interactions. Anal Chem 2012; 84(3): 1302-9.
[58]
Frey O, Misun PM, Fluri DA, Hengstler JG, Hierlemann A. Reconfigurable microfluidic hanging drop network for multi-tissue interaction and analysis. Nat Commun 2014; 5: 4250.
[59]
Occhetta P, Centola M, Tonnarelli B, Redaelli A, Martin I, Rasponi M. High-Throughput Microfluidic Platform for 3D Cultures of Mesenchymal Stem Cells, Towards Engineering Developmental Processes. Sci Rep 2015; 5: 10288.
[60]
Baker BM, Trappmann B, Stapleton SC, Toro E, Chen CS. Microfluidics embedded within extracellular matrix to define vascular architectures and pattern diffusive gradients. Lab Chip 2013; 13(16): 3246-52.
[61]
Malda J, Visser J, Melchels FP, et al. 25th anniversary article: Engineering hydrogels for biofabrication. Adv Mater 2013; 25(36): 5011-28.
[62]
Gao D, Liu J, Wei H-B, Li H-F, Guo G-S, Lin J-M. A microfluidic approach for anticancer drug analysis based on hydrogel encapsulated tumor cells. Anal Chim Acta 2010; 665(1): 7-14.
[63]
Yang K, Jung H, Lee H-R, et al. Multiscale, hierarchically patterned topography for directing human neural stem cells into functional neurons. ACS Nano 2014; 8(8): 7809-22.
[64]
Yang K, Lee J, Lee JS, et al. Graphene Oxide Hierarchical Patterns for the Derivation of Electrophysiologically Functional Neuron-like Cells from Human Neural Stem Cells. ACS Appl Mater Interfaces 2016; 8(28): 17763-74.
[65]
Allen JL, Cooke ME, Alliston T. ECM stiffness primes the TGFβ pathway to promote chondrocyte differentiation. Mol Biol Cell 2012; 23(18): 3731-42.
[66]
Davisson T, Kunig S, Chen A, Sah R, Ratcliffe A. Static and dynamic compression modulate matrix metabolism in tissue engineered cartilage. J Orthop Res 2002; 20(4): 842-8.
[67]
Nunes SS, Miklas JW, Liu J, et al. Biowire: a platform for maturation of human pluripotent stem cell-derived cardiomyocytes. Nat Methods 2013; 10(8): 781-7.
[68]
Dalby MJ, Gadegaard N, Tare R, et al. The control of human mesenchymal cell differentiation using nanoscale symmetry and disorder. Nat Mater 2007; 6(12): 997-1003.
[69]
Ankam S, Suryana M, Chan LY, et al. Substrate topography and size determine the fate of human embryonic stem cells to neuronal or glial lineage. Acta Biomater 2013; 9(1): 4535-45.
[70]
Kingham E, White K, Gadegaard N, Dalby MJ, Oreffo RO. Nanotopographical cues augment mesenchymal differentiation of human embryonic stem cells. Small 2013; 9(12): 2140-51.
[71]
Jeon H, Koo S, Reese WM, Loskill P, Grigoropoulos CP, Healy KE. Directing cell migration and organization via nanocrater-patterned cell-repellent interfaces. Nat Mater 2015; 14(9): 918-23.
[72]
Unadkat HV, Hulsman M, Cornelissen K, et al. An algorithm-based topographical biomaterials library to instruct cell fate. Proc Natl Acad Sci USA 2011; 108(40): 16565-70.
[73]
Hu J, Gondarenko AA, Dang AP, et al. High-Throughput Mechanobiology Screening Platform Using Micro- and Nanotopography. Nano Lett 2016; 16(4): 2198-204.
[74]
Engler AJ, Sen S, Sweeney HL, Discher DE. Matrix elasticity directs stem cell lineage specification. Cell 2006; 126(4): 677-89.
[75]
Mih JD, Sharif AS, Liu F, Marinkovic A, Symer MM, Tschumperlin DJ. A multiwell platform for studying stiffness-dependent cell biology. PLoS One 2011; 6(5): e19929.
[76]
Visvader JE, Lindeman GJ. Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nat Rev Cancer 2008; 8(10): 755-68.
[77]
Dean M, Fojo T, Bates S. Tumour stem cells and drug resistance. Nat Rev Cancer 2005; 5(4): 275-84.
[78]
Mehlen P, Puisieux A. Metastasis: a question of life or death. Nat Rev Cancer 2006; 6(6): 449-58.
[79]
Liu J, Tan Y, Zhang H, et al. Soft fibrin gels promote selection and growth of tumorigenic cells. Nat Mater 2012; 11(8): 734-41.
[80]
Tan Y, Tajik A, Chen J, et al. Matrix softness regulates plasticity of tumour-repopulating cells via H3K9 demethylation and Sox2 expression. Nat Commun 2014; 5: 4619.
[81]
Lee J, Abdeen AA, Wycislo KL, Fan TM, Kilian KA. Interfacial geometry dictates cancer cell tumorigenicity. Nat Mater 2016; 15(8): 856-62.
[82]
Ehrlich PJ, Lanyon LE. Mechanical strain and bone cell function: a review. Osteoporos Int 2002; 13(9): 688-700.
[83]
Tandon N, Marsano A, Maidhof R, et al. Surface-patterned electrode bioreactor for electrical stimulation. Lab Chip 2010; 10(6): 692-700.
[84]
Sathaye A, Bursac N, Sheehy S, Tung L. Electrical pacing counteracts intrinsic shortening of action potential duration of neonatal rat ventricular cells in culture. J Mol Cell Cardiol 2006; 41(4): 633-41.
[85]
Wang D-L, Jiang S-D, Dai L-Y. Biologic response of the intervertebral disc to static and dynamic compression in vitro. Spine 2007; 32(23): 2521-8.
[86]
Pelaez D, Huang CY, Cheung HS. Cyclic compression maintains viability and induces chondrogenesis of human mesenchymal stem cells in fibrin gel scaffolds. Stem Cells Dev 2009; 18(1): 93-102.
[87]
Rath B, Nam J, Knobloch TJ, Lannutti JJ, Agarwal S. Compressive forces induce osteogenic gene expression in calvarial osteoblasts. J Biomech 2008; 41(5): 1095-103.
[88]
Moraes C, Wang G, Sun Y, Simmons CA. A microfabricated platform for high-throughput unconfined compression of micropatterned biomaterial arrays. Biomaterials 2010; 31(3): 577-84.
[89]
Liu H, Usprech J, Sun Y, Simmons CA. A microfabricated platform with hydrogel arrays for 3D mechanical stimulation of cells. Acta Biomater 2015.
[90]
Li Y, Huang G, Gao B, Li M, Genin GM, Lu TJ, et al. Magnetically actuated cell-laden microscale hydrogels for probing strain-induced cell responses in three dimensions. NPG Asia Mater 2016; 8(1): e238.
[91]
Seo J, Shin J-Y, Leijten J, et al. Interconnectable Dynamic Compression Bioreactors for Combinatorial Screening of Cell Mechanobiology in Three Dimensions. ACS Appl Mater Interfaces 2018; 10(16): 13293-303.
[92]
Heidi Au HT, Cui B, Chu ZE, Veres T, Radisic M. Cell culture chips for simultaneous application of topographical and electrical cues enhance phenotype of cardiomyocytes. Lab Chip 2009; 9(4): 564-75.
[93]
Chen MQ, Xie X, Wilson KD, et al. Current-controlled electrical point-source stimulation of embryonic stem cells. Cell Mol Bioeng 2009; 2(4): 625-35.
[94]
Jin Y, Seo J, Lee JS, et al. Triboelectric Nanogenerator Accelerates Highly Efficient Nonviral Direct Conversion and In Vivo Reprogramming of Fibroblasts to Functional Neuronal Cells. Adv Mater 2016; 28(34): 7365-74.
[95]
Dai X, Zhou W, Gao T, Liu J, Lieber CM. Three-dimensional mapping and regulation of action potential propagation in nanoelectronics-innervated tissues. Nat Nanotechnol 2016; 11(9): 776-82.
[96]
Mousavi Shaegh SA, De Ferrari F, Zhang YS, et al. A microfluidic optical platform for real-time monitoring of pH and oxygen in microfluidic bioreactors and organ-on-chip devices. Biomicrofluidics 2016; 10(4): 044111.
[97]
Thies R. Physiology (Oklahomar notes). 4th ed: Springer New
York; 1995 02/23/1995.
[98]
Brennan MD, Rexius-Hall ML, Elgass LJ, Eddington DT. Oxygen control with microfluidics. Lab Chip 2014; 14(22): 4305-18.
[99]
Massa S, Sakr MA, Seo J, et al. Bioprinted 3D vascularized tissue model for drug toxicity analysis. Biomicrofluidics 2017; 11(4): 044109.
[100]
Riahi R, Shaegh SAM, Ghaderi M, et al. Automated microfluidic platform of bead-based electrochemical immunosensor integrated with bioreactor for continual monitoring of cell secreted biomarkers. Sci Rep 2016; 6: 24598.
[101]
Shin SR, Zhang YS, Kim D-J, et al. Aptamer-Based Microfluidic Electrochemical Biosensor for Monitoring Cell-Secreted Trace Cardiac Biomarkers. Anal Chem 2016; 88(20): 10019-27.
[102]
Du L, Wu C, Peng H, Zou L, Zhao L, Huang L, et al. Piezoelectric olfactory receptor biosensor prepared by aptamer-assisted immobilization. Sens Actuators B Chem 2013; 187: 481-7.
[103]
Kara P, de la Escosura-Muñiz A, Maltez-da Costa M, Guix M, Ozsoz M, Merkoçi A. Aptamers based electrochemical biosensor for protein detection using carbon nanotubes platforms. Biosens Bioelectron 2010; 26(4): 1715-8.
[104]
Liu Y, Tuleouva N, Ramanculov E, Revzin A. Aptamer-based electrochemical biosensor for interferon gamma detection. Anal Chem 2010; 82(19): 8131-6.
[105]
Tombelli S, Minunni M, Mascini M. Aptamers-based assays for diagnostics, environmental and food analysis. Biomol Eng 2007; 24(2): 191-200.
[106]
Lai RY, Plaxco KW, Heeger AJ. Aptamer-based electrochemical detection of picomolar platelet-derived growth factor directly in blood serum. Anal Chem 2007; 79(1): 229-33.
[107]
Xiao Y, Lubin AA, Heeger AJ, Plaxco KW. Label-free electronic detection of thrombin in blood serum by using an aptamer-based sensor. Angew Chem Int Ed Engl 2005; 44(34): 5456-9.
[108]
McCauley TG, Hamaguchi N, Stanton M. Aptamer-based biosensor arrays for detection and quantification of biological macromolecules. Anal Biochem 2003; 319(2): 244-50.
[109]
Liss M, Petersen B, Wolf H, Prohaska E. An aptamer-based quartz crystal protein biosensor. Anal Chem 2002; 74(17): 4488-95.
[110]
Ruigrok VJB, Levisson M, Eppink MHM, Smidt H, van der Oost J. Alternative affinity tools: more attractive than antibodies? Biochem J 2011; 436(1): 1-13.
[111]
Stoltenburg R, Reinemann C, Strehlitz B. SELEX--a (r)evolutionary method to generate high-affinity nucleic acid ligands. Biomol Eng 2007; 24(4): 381-403.
[112]
Sun H, Zhu X, Lu PY, Rosato RR, Tan W, Zu Y. Oligonucleotide aptamers: new tools for targeted cancer therapy. Mol Ther Nucleic Acids 2014; 3(8): e182.
[113]
Jayasena SD. Aptamers: an emerging class of molecules that rival antibodies in diagnostics. Clin Chem 1999; 45(9): 1628-50.
[114]
Tia SQ, He M, Kim D, Herr AE. Multianalyte on-chip native Western blotting. Anal Chem 2011; 83(9): 3581-8.
[115]
Shin SR, Kilic T, Zhang YS, et al. Label-Free and Regenerative Electrochemical Microfluidic Biosensors for Continual Monitoring of Cell Secretomes. Adv Sci (Weinh) 2017; 4(5): 1600522.
[116]
Zhang YS, Aleman J, Shin SR, et al. Multisensor-integrated organs-on-chips platform for automated and continual in situ monitoring of organoid behaviors. Proc Natl Acad Sci USA 2017; 114(12): E2293-302.
[117]
Zhang Y-F, He W, Zhang C, et al. Role of receptor interacting protein (RIP)1 on apoptosis-inducing factor-mediated necroptosis during acetaminophen-evoked acute liver failure in mice. Toxicol Lett 2014; 225(3): 445-53.
[118]
Zhang H, Oellers T, Feng W, et al. High-Density Droplet Microarray of Individually Addressable Electrochemical Cells. Anal Chem 2017; 89(11): 5832-9.
[119]
Zhang Y, Wang T-H. Full-range magnetic manipulation of droplets via surface energy traps enables complex bioassays. Adv Mater 2013; 25(21): 2903-8.
[120]
Pollack MG, Fair RB, Shenderov AD. Electrowetting-based actuation of liquid droplets for microfluidic applications. Appl Phys Lett 2000; 77(11): 1725-6.
[121]
Han H, Lee JS, Kim H, et al. Single-Droplet Multiplex Bioassay on a Robust and Stretchable Extreme Wetting Substrate through Vacuum-Based Droplet Manipulation. ACS Nano 2018; 12(2): 932-41.