[1]
Gstaiger, M.; Aebersold, R. Applying mass spectrometry-based proteomics to genetics, genomics and network biology. Nat. Rev. Genet., 2009, 10, 617-627.
[2]
Sharma, K.S. Mass spectrometry-The early years. Int. J. Mass Spectrom., 2013, 349-350, 3-8.
[3]
Blaum, K.; Litvinov, Y.A. 100 years of mass spectrometry. Int. J. Mass Spectrom., 2013, 349-350, 1-276.
[4]
Angel, T.E.; Aryal, U.K.; Hengel, S.M.; Baker, E.S.; Kelly, R.T.; Robinson, E.W.; Smith, R.D. Mass spectrometry-based proteomics: Existing capabilities and future directions. Chem. Soc. Rev., 2012, 41, 3912-3928.
[5]
Harkewicz, R.; Dennis, E.A. Applications of mass spectrometry to lipids and membranes. Annu. Rev. Biochem., 2011, 80, 301-325.
[6]
Kocher, T.; Superti-Furga, G. Mass spectrometry-based functional proteomics: from molecular machines to protein networks. Nat. Methods, 2007, 4, 807-815.
[7]
Aebersold, R.; Mann, M. Mass spectrometry-based proteomics. Nature, 2003, 422, 198-207.
[8]
Schulze, W.X.; Usadel, B. Quantitation in mass-spectrometry-based proteomics. Annu. Rev. Plant Biol., 2010, 61, 491-516.
[9]
Bensimon, A.; Heck, A.J.; Aebersold, R. Mass spectrometry-based proteomics and network biology. Annu. Rev. Biochem., 2012, 81, 379-405.
[10]
Hsu, F.J.; Liu, T.L.; Laskar, A.H.; Shiea, J.; Huang, M.Z. Gravitational sampling electrospray ionization mass spectrometry for real-time reaction monitoring. Rapid Commun. Mass Spectrom., 2014, 28, 1979-1986.
[11]
Snijder, J.; Heck, A.J. Analytical approaches for size and mass analysis of large protein assemblies. Annu. Rev. Anal. Chem., (Palo Alto Calif) 2014, 7, 43-64.
[12]
Gut, I.G. DNA analysis by MALDI-TOF mass spectrometry. Hum. Mutat., 2004, 23, 437-441.
[13]
Joyner, J.C.; Keuper, K.D.; Cowan, J.A. Analysis of RNA cleavage by MALDI-TOF mass spectrometry. Nucleic Acids Res., 2013, 41, e2.
[14]
Bantscheff, M.; Lemeer, S.; Savitski, M.M.; Kuster, B. Quantitative mass spectrometry in proteomics: critical review update from 2007 to the present. Anal. Bioanal. Chem., 2012, 404, 939-965.
[15]
Bauer, A.; Kuster, B. Affinity purification-mass spectrometry. Powerful tools for the characterization of protein complexes. Eur. J. Biochem., 2003, 270, 570-578.
[16]
Walther, T.C.; Mann, M. Mass spectrometry-based proteomics in cell biology. J. Cell Biol., 2010, 190, 491-500.
[17]
Nesvizhskii, A.I.; Keller, A.; Kolker, E.; Aebersold, R. A statistical model for identifying proteins by tandem mass spectrometry. Anal. Chem., 2003, 75, 4646-4658.
[18]
Sauer, S.; Freiwald, A.; Maier, T.; Kube, M.; Reinhardt, R.; Kostrzewa, M.; Geider, K. Classification and identification of bacteria by mass spectrometry and computational analysis. PLoS One, 2008, 3, e2843.
[19]
Pedrioli, P.G.; Eng, J.K.; Hubley, R.; Vogelzang, M.; Deutsch, E.W.; Raught, B.; Pratt, B.; Nilsson, E.; Angeletti, R.H.; Apweiler, R.; Cheung, K.; Costello, C.E.; Hermjakob, H.; Huang, S.; Julian, R.K.; Kapp, E.; McComb, M.E.; Oliver, S.G.; Omenn, G.; Paton, N.W.; Simpson, R.; Smith, R.; Taylor, C.F.; Zhu, W.; Aebersold, R. A common open representation of mass spectrometry data and its application to proteomics research. Nat. Biotechnol., 2004, 22, 1459-1466.
[20]
Lamond, A.; Uhlen, M.; Horning, S.; Makarov, A.; Robinson, C.V.; Serrano, L.; Hartl, F.U.; Baumeister, W.; Werenskiold, A.K.; Andersen, J.S.; Vorm, O.; Linial, M.; Aebersold, R.; Mann, M. Advancing cell biology through proteomics in space and time (prospects). Mol. Cell Proteomics, 2012. 11, O112.017731.
[21]
Babu, M.; Kagan, O.; Guo, H.; Greenblatt, J.; Emili, A. Identification of protein complexes in Escherichia coli using sequential peptide affinity purification in combination with tandem mass spectrometry. J. Vis. Exp., 2012, 69, 4057.
[22]
Mann, M.; Hendrickson, R.C.; Pandey, A. Analysis of proteins and proteomes by mass spectrometry. Annu. Rev. Biochem., 2001, 70, 437-473.
[23]
Konermann, L.; Ahadi, E.; Rodriguez, A.D.; Vahidi, S. Unraveling the mechanism of electrospray ionization. Anal. Chem., 2013, 85, 2-9.
[24]
Huang, M.Z.; Hsu, H.J.; Lee, J.Y.; Jeng, J.; Shiea, J. Direct protein detection from biological media through electrospray-assisted laser desorption ionization/mass spectrometry. J. Proteome Res., 2006, 5, 1107-1116.
[25]
Yates, J.R.; Ruse, C.I.; Nakorchevsky, A. Proteomics by mass spectrometry: Approaches, advances, and applications. Annu. Rev. Biomed. Eng., 2009, 11, 49-79.
[26]
Cox, J.; Hein, M.Y.; Luber, C.A.; Paron, I.; Nagaraj, N.; Mann, M. Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ. Mol. Cell. Proteomics, 2014, 13, 2513-2526.
[27]
Dason, S.R.P.; Batruch, I.; Smith, C.R.; Diamandis, E.P. Evaluation of sieve as a label-free mass spectrometry protein quantification method. J. Undergrad. Life Sci., 2009, 3, 33-35.
[28]
Standard, G.; Processing, Q.D. MultiQuant TM software 2 . 0 for targeted protein / peptide quantification. Sciex, 1-5.
[29]
Nilsson, T.; Mann, M.; Aebersold, R.; Yates, J.R.; Bairoch, A.; Bergeron, J.J. Mass spectrometry in high-throughput proteomics: Ready for the big time. Nat. Methods, 2010, 7, 681-685.
[30]
Cote, R.G.; Griss, J.; Dianes, J.A.; Wang, R.; Wright, J.C.; van den Toorn, H.W.; van Breukelen, B.; Heck, A.J.; Hulstaert, N.; Martens, L.; Reisinger, F.; Csordas, A.; Ovelleiro, D.; Perez-Rivevol, Y.; Barsnes, H.; Hermjakob, H.; Vizcaino, J.A. The PRoteomics IDEntification (PRIDE) converter 2 framework: an improved suite of tools to facilitate data submission to the PRIDE database and the proteomexchange consortium. Mol. Cell. Proteomics, 2012, 11, 1682-1689.
[31]
Vizcaino, J.A.; Deutsch, E.W.; Wang, R.; Csordas, A.; Reisinger, F.; Rios, D.; Dianes, J.A.; Sun, Z.; Farrah, T.; Bandeira, N.; Binz, P.A.; Xenarios, I.; Eisenacher, M.; Mayer, G.; Gatto, L.; Campos, A.; Chalkley, R.J.; Kraus, H.J.; Albar, J.P.; Martinez-Bartolome, S.; Apweiler, R.; Omenn, G.S.; Martens, L.; Jones, A.R.; Hermjakob, H. ProteomeXchange provides globally coordinated proteomics data submission and dissemination. Nat. Biotechnol., 2014, 32, 223-226.
[32]
Chernushevich, I.V.; Loboda, A.V.; Thomson, B.A. An introduction to quadrupole-time-of-flight mass spectrometry. J. Mass Spectrom., 2001, 36, 849-865.
[33]
Makarov, A.; Denisov, E.; Kholomeev, A.; Balschun, W.; Lange, O.; Strupat, K.; Horning, S. Performance evaluation of a hybrid linear ion trap/orbitrap mass spectrometer. Anal. Chem., 2006, 78, 2113-2120.
[34]
Wilm, M. Principles of electrospray ionization. Mol. Cell. Proteomics,, 2011. 10, M111 009407.
[35]
Mandal, M.K.; Chen, L.C.; Hashimoto, Y.; Yu, Z.; Hiraoka, K. Detection of biomolecules from solutions with high concentration of salts using probe electrospray and nano-electrospray ionization mass spectrometry. Anal. Methods, 2010, 2, 1905-1912.
[36]
Heck, A.J.; Van Den Heuvel, R.H. Investigation of intact protein complexes by mass spectrometry. Mass Spectrom. Rev., 2004, 23, 368-389.
[37]
Kebarle, P.; Verkerk, U.H. Electrospray: From ions in solution to ions in the gas phase, what we know now. Mass Spectrom. Rev., 2009, 28, 898-917.
[38]
Banerjee, S.; Mazumdar, S. Electrospray ionization mass spectrometry: a technique to access the information beyond the molecular weight of the analyte. Int. J. Anal. Chem., 2012, 2012, 282574.
[39]
Hilton, G.R.; Benesch, J.L. Two decades of studying non-covalent biomolecular assemblies by means of electrospray ionization mass spectrometry. J. Soc. Interface, 2012, 9, 801-816.
[40]
Hu, B.; So, P.K.; Chen, H.; Yao, Z.P. Electrospray ionization using wooden tips. Anal. Chem., 2011, 83, 8201-8207.
[41]
Dreisewerd, K. Recent methodological advances in MALDI mass spectrometry. Anal. Bioanal. Chem., 2014, 406, 2261-2278.
[42]
Croxatto, A.; Prod’hom, G.; Greub, G. Applications of MALDI-TOF mass spectrometry in clinical diagnostic microbiology. FEMS Microbiol. Rev., 2012, 36, 380-407.
[43]
Guerrera, I.C.; Kleiner, O. Application of mass spectrometry in proteomics. Biosci. Rep., 2005, 25, 71-93.
[44]
Madler, S.; Boeri, E.E.; Zenobi, R. MALDI-ToF mass spectrometry for studying noncovalent complexes of biomolecules. Top. Curr. Chem., 2013, 331, 1-36.
[45]
Yao, Z.P. Characterization of proteins by ambient mass spectrometry. Mass Spectrom. Rev., 2012, 31, 437-447.
[46]
Wiseman, J.M.; Laughlin, B.C. Desorption electrospray ionization (DESI) mass spectrometry: A brief introduction and overview. Prosolia, Inc., Indianapolis, In USA pp. 11-14.
[47]
Monge, M.E.; Harris, G.A.; Dwivedi, P.; Fernandez, F.M. Mass spectrometry: recent advances in direct open air surface sampling/ionization. Chem. Rev., 2013, 113, 2269-2308.
[48]
Thunig, J.; Hansen, S.H.; Janfelt, C. Analysis of secondary plant metabolites by indirect desorption electrospray ionization imaging mass spectrometry. Anal. Chem., 2011, 83, 3256-3259.
[49]
Ferguson, C.N.; Benchaar, S.A.; Miao, Z.; Loo, J.A.; Chen, H. Direct ionization of large proteins and protein complexes by desorption electrospray ionization-mass spectrometry. Anal. Chem., 2011, 83, 6468-6473.
[50]
Takats, Z.; Wiseman, J.M.; Gologan, B.; Cooks, R.G. Mass spectrometry sampling under ambient conditions with desorption electrospray ionization. Science, 2004, 306, 471-473.
[51]
Harris, G.A.; Galhena, A.S.; Fernandez, F.M. Ambient sampling/ionization mass spectrometry: applications and current trends. Anal. Chem., 2011, 83, 4508-4538.
[52]
Friia, M.; Legros, V.; Tortajada, J.; Buchmann, W. Desorption electrospray ionization - orbitrap mass spectrometry of synthetic polymers and copolymers. J. Mass Spectrom., 2012, 47, 1023-1033.
[53]
Chernetsova, E.S.; Morlock, G.E. Ambient desorption ionization mass spectrometry (DART, DESI) and its bioanalytical applications. Bioanal. Rev., 2011, 3, 1-9.
[54]
Hsu, C.C.; White, N.M.; Hayashi, M.; Lin, E.C.; Poon, T.; Banerjee, I.; Chen, J.; Pfaff, S.L.; Macagno, E.R.; Dorrestein, P.C. Microscopy ambient ionization top-down mass spectrometry reveals developmental patterning. Proc. Natl. Acad. Sci. USA, 2013, 110, 14855-14860.
[55]
Kononikhin, A.; Huang, M.Z.; Popov, I.; Kostyukevich, Y.; Kukaev, E.; Boldyrev, A.; Spasskiy, A.; Leypunskiy, I.; Shiea, J.; Nikolaev, E. Signal enhancement in electrospray laser desorption/ionization mass spectrometry by using a black oxide-coated metal target and a relatively low laser fluence. Eur. J. Mass Spectrom. , 2013, 19, 247-252.
[56]
Robichaud, G.; Barry, J.A.; Garrard, K.P.; Muddiman, D.C. Infrared Matrix-Assisted Laser Desorption Electrospray Ionization (IR-MALDESI) imaging source coupled to a FT-ICR mass spectrometer. J. Am. Soc. Mass Spectrom., 2013, 24, 92-100.
[57]
Seeley, E.H.; Caprioli, R.M. Molecular imaging of proteins in tissues by mass spectrometry. Proc. Natl. Acad. Sci. USA, 2008, 105, 18126-18131.
[58]
McDonnell, L.A.; Heeren, R.M. Imaging mass spectrometry. Mass Spectrom. Rev., 2007, 26, 606-643.
[59]
Amstalden van Hove, E.R.; Smith, D.F.; Heeren, R.M. A concise review of mass spectrometry imaging. J. Chromatogr. A, 2010, 1217, 3946-3954.
[60]
Rubakhin, S.S.; Jurchen, J.C.; Monroe, E.B.; Sweedler, J.V. Imaging mass spectrometry: Fundamentals and applications to drug discovery. Drug Discov. Today, 2005, 10, 823-837.
[61]
Groseclose, M.R.; Massion, P.P.; Chaurand, P.; Caprioli, R.M. High-throughput proteomic analysis of formalin-fixed paraffin-embedded tissue microarrays using MALDI imaging mass spectrometry. Proteomics, 2008, 8, 3715-3724.
[62]
Walch, A.; Rauser, S.; Deininger, S.O.; Hofler, H. MALDI imaging mass spectrometry for direct tissue analysis: A new frontier for molecular histology. Histochem. Cell Biol., 2008, 130, 421-434.
[63]
Cornett, D.S.; Reyzer, M.L.; Chaurand, P.; Caprioli, R.M. MALDI imaging mass spectrometry: Molecular snapshots of biochemical systems. Nat. Methods, 2007, 4, 828-833.
[64]
Douglass, K.A.; Ifa, D.R.; Venter, A.R. Technologies and principles of mass spectral imaging. In: Moyer, B.; Cheruvu, N.; Hu, T.C.; Eds Pharmaco-imaging in drug and biologics development. Adv. Pharmaceut. Sci. Series; vol. 8, Springer, New York, NY, USA . , 2014.
[65]
Kaspar, S.; Peukert, M.; Svatos, A.; Matros, A.; Mock, H.P. MALDI-imaging mass spectrometry-an emerging technique in plant biology. Proteomics, 2011, 11, 1840-1850.
[66]
Vickerman, J.C. Molecular imaging and depth profiling by mass spectrometry-SIMS, MALDI or DESI? Analyst , 2011, 136, 2199-2217.
[67]
Watrous, J.D.; Alexandrov, T.; Dorrestein, P.C. The evolving field of imaging mass spectrometry and its impact on future biological research. J. Mass Spectrom., 2011, 46, 209-222.
[68]
Seeley, E.H.; Caprioli, R.M. 3D imaging by mass spectrometry: a new frontier. Anal. Chem., 2012, 84, 2105-2110.
[69]
Ifa, D.R.; Wiseman, J.M.; Song, Q.; Cooks, R.G. Development of capabilities for imaging mass spectrometry under ambient conditions with desorption electrospray ionization (DESI). Int. J. Mass Spectrom., 2007, 259, 8-15.
[70]
Chughtai, K.; Heeren, R.M. Mass spectrometric imaging for biomedical tissue analysis. Chem. Rev., 2010, 110, 3237-3277.
[71]
Calligaris, D.; Caragacianu, D.; Liu, X.; Norton, I.; Thompson, C.J.; Richardson, A.L.; Golshan, M.; Easterling, M.L.; Santagata, S.; Dillon, D.L.; Agar, N.Y.R. Application of desorption electrospray ionization mass spectrometry imaging in breast cancer margin analysis. PNAS, 2014, 111, 15184-15189.
[72]
Kerian, K.S.; Jarmusch, A.K.; Pirro, V.; Koch, M.O.; Masterson, T.A.; Cooks, R.G. Differentiation of prostate cancer from normal tissue in radical prostatectomy specimens by desorption electrospray ionization and touch spray ionization mass spectrometry. Analyst , 2015, 140, 1090-1098.
[73]
O’Hair, R.A. Chemical ionization mass spectrometry: 50 Years on. J. Am. Soc. Mass Spectrom., 2016, 27, 1787-1788.
[74]
Rankovic, M.L.; Giuliani, A.; Milosavljevic, A.R. Design and performance of an instrument for electron impact tandem mass spectrometry and action spectroscopy of mass/charge selected macromolecular ions stored in RF ion trap. The Eur. Phys. J. D, 2016, 70, 1-11.