[1]
Rhoads A, Au KF. PacBio sequencing and its applications. Genomics Proteomics Bioinformatics 2015; 13(5): 278-89.
[2]
Gonzalez-Garay ML. Introduction to isoform sequencing using pacific biosciences technology (Iso-Seq) Transcriptomics and Gene Regulation. Springer 2016; pp. 141-60.
[3]
Abdel-Ghany SE, Hamilton M, Jacobi JL, et al. A survey of the sorghum transcriptome using single-molecule long reads. Nat Commun 2016; 7: 11706.
[4]
Wang T, Wang H, Cai D, et al. Comprehensive profiling of rhizome-associated alternative splicing and alternative polyadenylation in moso bamboo (Phyllostachys edulis). Plant J 2017; 91(4): 684-99.
[5]
Wang T, Wang H, Cai D, et al. Comprehensive profiling of rhizome-associated alternative splicing and alternative polyadenylation in moso bamboo (Phyllostachys edulis). Plant J 2017; 91(4): 684-99.
[6]
Li S, Yamada M, Han X, Ohler U, Benfey PN. High-resolution expression map of the Arabidopsis root reveals alternative splicing and lincRNA regulation. Dev Cell 2016; 39(4): 508-22.
[7]
Au KF, Underwood JG, Lee L, Wong WH. Improving PacBio long read accuracy by short read alignment. PLoS One 2012; 7(10)e46679
[8]
Wu TD, Watanabe CK. GMAP: a genomic mapping and alignment program for mRNA and EST sequences. Bioinformatics 2005; 21(9): 1859-75.
[9]
Fu L, Niu B, Zhu Z, Wu S, Li W. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics 2012; 28(23): 3150-2.
[10]
Wang B, Tseng E, Regulski M, et al. Unveiling the complexity of the maize transcriptome by single-molecule long-read sequencing. Nat Commun 2016; 7: 11708.
[11]
Zhu FY, Chen MX, Ye NH, et al. Proteogenomic analysis reveals alternative splicing and translation as part of the abscisic acid response in Arabidopsis seedlings. Plant J 2017; 91(3): 518-33.
[12]
Xu Q, Zhu J, Zhao S, et al. Transcriptome Profiling Using Single-Molecule Direct RNA Sequencing Approach for In-depth Understanding of Genes in Secondary Metabolism Pathways of Camellia sinensis. Front Plant Sci 2017; 8: 1205.
[13]
Xu Z, Peters RJ, Weirather J, et al. Full-length transcriptome sequences and splice variants obtained by a combination of sequencing platforms applied to different root tissues of Salvia miltiorrhiza and tanshinone biosynthesis. Plant J 2015; 82(6): 951-61.
[14]
Metzker ML. Sequencing technologies - the next generation. Nat Rev Genet 2010; 11(1): 31-46.
[15]
Travers KJ, Chin C-S, Rank DR, Eid JS, Turner SW. A flexible and efficient template format for circular consensus sequencing and SNP detection. Nucleic Acids Res 2010; 38(15)e159
[16]
Pelechano V, Wei W, Jakob P, Steinmetz LM. Genome-wide identification of transcript start and end sites by transcript isoform sequencing. Nat Protoc 2014; 9(7): 1740-59.
[17]
Dong L, Liu H, Zhang J, et al. Single-molecule real-time transcript sequencing facilitates common wheat genome annotation and grain transcriptome research. BMC Genomics 2015; 16(1): 1039.
[18]
Tilgner H, Jahanbani F, Blauwkamp T, et al. Comprehensive transcriptome analysis using synthetic long-read sequencing reveals molecular co-association of distant splicing events. Nat Biotechnol 2015; 33(7): 736-42.
[19]
Liu X, Mei W, Soltis PS, Soltis DE, Barbazuk WB. Detecting alternatively spliced transcript isoforms from single-molecule long-read sequences without a reference genome. Mol Ecol Resour 2017; 17(6): 1243-56.
[20]
Wu X, Liu M, Downie B, et al. Genome-wide landscape of polyadenylation in Arabidopsis provides evidence for extensive alternative polyadenylation. Proc Natl Acad Sci USA 2011; 108(30): 12533-8.
[21]
Zhang Y, Gu L, Hou Y, et al. Integrative genome-wide analysis reveals HLP1, a novel RNA-binding protein, regulates plant flowering by targeting alternative polyadenylation. Cell Res 2015; 25(7): 864-76.
[22]
Filichkin SA, Priest HD, Givan SA, et al. Genome-wide mapping of alternative splicing in Arabidopsis thaliana. Genome Res 2010; 20(1): 45-58.
[23]
Muniz L, Davidson L, West S. Poly (A) polymerase and the nuclear poly (A) binding protein, PABPN1, coordinate the splicing and degradation of a subset of human pre-mRNAs. Mol Cell Biol 2015; 35(13): 2218-30.
[24]
Li Y, Dai C, Hu C, Liu Z, Kang C. Global identification of alternative splicing via comparative analysis of SMRT- and Illumina-based RNA-seq in strawberry. Plant J 2017; 90(1): 164-76.
[25]
Shepard PJ, Choi E-A, Lu J, Flanagan LA, Hertel KJ, Shi Y. Complex and dynamic landscape of RNA polyadenylation revealed by PAS-Seq. RNA 2011; 17(4): 761-72.
[26]
Nam DK, Lee S, Zhou G, et al. Oligo(dT) primer generates a high frequency of truncated cDNAs through internal poly(A) priming during reverse transcription. Proc Natl Acad Sci USA 2002; 99(9): 6152-6.
[27]
Sherstnev A, Duc C, Cole C, et al. Direct sequencing of Arabidopsis thaliana RNA reveals patterns of cleavage and polyadenylation. Nat Struct Mol Biol 2012; 19(8): 845-52.
[28]
Ozsolak F, Platt AR, Jones DR, et al. Direct RNA sequencing. Nature 2009; 461(7265): 814-8.
[29]
Li H, Wang J, Mor G, Sklar J. A neoplastic gene fusion mimics trans-splicing of RNAs in normal human cells. Science 2008; 321(5894): 1357-61.
[30]
Zhang G, Guo G, Hu X, et al. Deep RNA sequencing at single base-pair resolution reveals high complexity of the rice transcriptome. Genome Res 2010; 20(5): 646-54.
[31]
Koren S, Schatz MC, Walenz BP, et al. Adam M Phillippy. Hybrid error correction and de novo assembly of single-molecule sequencing reads. Nat Biotechnol 2012; 30(7): 693-700.
[32]
Salmela L, Rivals E. LoRDEC: accurate and efficient long read error correction. Bioinformatics 2014; 30(24): 3506-14.
[33]
Chaisson MJ, Tesler G. Mapping single molecule sequencing reads using basic local alignment with successive refinement (BLASR): application and theory. BMC Bioinformatics 2012; 13(1): 238.
[34]
Li H. Minimap2: versatile pairwise alignment for nucleotide sequences. arXiv 2017. 1708
[35]
Dobin A, Davis CA, Schlesinger F, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 2013; 29(1): 15-21.
[36]
Li H, Durbin R. Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics 2010; 26(5): 589-95.
[37]
Kent WJ. BLAT--the BLAST-like alignment tool. Genome Res 2002; 12(4): 656-64.
[38]
Krizanovic K, Echchiki A, Roux J, Sikic M. Evaluation of tools for
long read RNA-seq splice-aware alignment. bioRxiv 2017. 126656
[39]
Au KF, Sebastiano V, Afshar PT, et al. Characterization of the human ESC transcriptome by hybrid sequencing. Proc Natl Acad Sci USA 2013; 110(50): E4821-30.
[40]
Shen S, Park JW, Lu ZX, et al. rMATS: robust and flexible detection of differential alternative splicing from replicate RNA-Seq data. Proc Natl Acad Sci USA 2014; 111(51): E5593-601.
[41]
Campbell MA, Haas BJ, Hamilton JP, Mount SM, Buell CR. Comprehensive analysis of alternative splicing in rice and comparative analyses with Arabidopsis. BMC Genomics 2006; 7(1): 327.
[42]
Foissac S, Sammeth M. ASTALAVISTA: dynamic and flexible analysis of alternative splicing events in custom gene datasets. Nucleic Acids Res 2007; 35(Web Server issue): W297-9.
[43]
Pertea M, Pertea GM, Antonescu CM, Chang T-C, Mendell JT, Salzberg SL. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat Biotechnol 2015; 33(3): 290-5.
[44]
Hu J, Uapinyoying P, Goecks J. Interactive analysis of Long-read RNA isoforms with Iso-Seq Browser. bioRxiv 2017. 102905s
[45]
Zhou R, Moshgabadi N, Adams KL. Extensive changes to alternative splicing patterns following allopolyploidy in natural and resynthesized polyploids. Proc Natl Acad Sci USA 2011; 108(38): 16122-7.
[46]
Ner-Gaon H, Leviatan N, Rubin E, Fluhr R. Comparative cross-species alternative splicing in plants. Plant Physiol 2007; 144(3): 1632-41.
[47]
VanBuren R, Bryant D, Edger PP, et al. Single-molecule sequencing of the desiccation-tolerant grass Oropetium thomaeum. Nature 2015; 527(7579): 508-11.
[48]
Badouin H, Gouzy J, Grassa CJ, et al. The sunflower genome provides insights into oil metabolism, flowering and Asterid evolution. Nature 2017; 546(7656): 148-52.
[49]
Wang X, Xu Y, Zhang S, et al. Genomic analyses of primitive, wild and cultivated citrus provide insights into asexual reproduction. Nat Genet 2017; 49(5): 765-72.
[50]
Chin C-S, Alexander DH, Marks P, et al. Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat Methods 2013; 10(6): 563-9.