[1]
Younis A, Siddique MI, Kim CK, Lim KB. RNA interference (RNAi) induced gene silencing: a promising approach of hi-tech plant breeding. Int J Biol Sci 2014; 10: 1150.
[2]
Pathak K, Gogoi B. RNA interference (RNAi), application in crop improvement: a review. Agric Rev 2016; 37(3): 245-9.
[3]
Borel B. When the pesticides run out. Nat 2017; 543: 302-4.
[4]
Majumdar R, Rajasekaran K, Cary JW. RNA Interference (RNAi) as a potential tool for control of mycotoxin contamination in crop plants: concepts and considerations. Front Plant Sci 2017; 8: 200.
[5]
Andersen MM, Landes X, Xiang W, et al. Feasibility of new breeding techniques for organic farming. Trends Plant Sci 2015; 20(7): 426-34.
[6]
Grishok A, Pasquinelli AE, Conte D, et al. Genes and mechanisms related to RNA interference regulate expression of the small temporal RNAs that control C. elegans developmental timing. Cell 2001; 106(1): 23-34.
[7]
Uluisik S, Chapman NH, Smith R, et al. Genetic improvement of tomato by targeted control of fruit softening. Nat Biotechnol 2016; 34(9): 950.
[8]
Gordon KH, Waterhouse PM. RNAi for insect-proof plants. Nat Biotechnol 2007; 25(11): 1231.
[9]
Gheysen G, Vanholme B. RNAi from plants to nematodes. Trends Biotechnol 2007; 25(3): 89-92.
[10]
Pooggin M, Shivaprasad PV, Veluthambi K, Hohn T. RNAi targeting of DNA virus in plants. Nat Biotechnol 2003; 21(2): 131.
[11]
Huvenne H, Smagghe G. Mechanisms of dsRNA uptake in insects and potential of RNAi for pest control: a review. J Insect Physiol 2010; 56(3): 227-35.
[12]
Killiny N, Hajeri S, Tiwari S, Gowda S, Stelinski LL. Double-stranded RNA uptake through topical application, mediates silencing of five CYP4 genes and suppresses insecticide resistance in Diaphorina citri. PLoS One 2014; 9(10)110536
[13]
Wang M, Jin H. Spray-induced gene silencing: a powerful innovative strategy for crop protection. Trends Microbiol 2017; 25(1): 4-6.
[14]
Cai Q, He B, Kogel KH, Jin H. Cross-kingdom RNA trafficking and environmental RNAi-nature’s blueprint for modern crop protection strategies. Curr Opin Microbiol 2018; 46: 58-64.
[15]
Wang M, Thomas N, Jin H. Cross-kingdom RNA trafficking and environmental RNAi for powerful innovative pre-and post-harvest plant protection. Curr Opin Plant Biol 2017; 38: 133-41.
[16]
Shew AM, Danforth DM, Nalley LL, Nayga Jr R.M., Tsiboe F, Dixon BL. New innovations in agricultural biotech: consumer acceptance of topical RNAi in rice production. Food Control 2017; 81: 189-95.
[17]
Malyska A, Bolla R, Twardowski T. The role of public opinion in shaping trajectories of agricultural biotechnology. Trends Biotechnol 2016; 34(7): 530-4.
[18]
Palmgren MG, Edenbrandt AK, Vedel SE, et al. Are we ready for back-to-nature crop breeding? Trends Plant Sci 2015; 203: 155-64.
[19]
Shew AM, Nalley LL, Danforth DM, et al. Are all GMO s the same? Consumer acceptance of cisgenic rice in India. Plant Biotechnol J 2016; 14(1): 4-7.
[20]
Waltz E. Nonbrowning GM apple cleared for market. Nat Biotechnol 2015; 33: 326-7.
[21]
Waltz E. USDA approves next-generation GM potato. Nat Biotechnol 2015; 33: 12-3.
[22]
Bonny S. Corporate concentration and technological change in the global seed industry. Sustainability 2017; 9(9): 1632.
[23]
Lundin P. Is silence still golden? Mapping the RNAi patent landscape Nat Biotechnol 2011; 29.6: 493.
[24]
Graff GD, Cullen SE, Bradford KJ, Zilberman D, Bennett AB. The public-private structure of intellectual property ownership in agricultural biotechnology. Nat Biotechnol 2003; 21(9): 989-95.
[25]
Chi-Ham CL, Clark KL, Bennett AB. The intellectual property landscape for gene suppression technologies in plants. Nat Biotechnol 2010; 28(1): 32.
[26]
Lusser M, Parisi C, Plan D, Rodríguez-Cerezo E. Deployment of new biotechnologies in plant breeding. Nat Biotechnol 2012; 30(3): 231.
[27]
Liston-Heyes C, Pilkington A. Inventive concentration in the production of green technology: a comparative analysis of fuel cell patents. Sci Public Policy 2004; 31(1): 15-25.
[28]
Wang YH, Luo GL, Guo YW. Why is there overcapacity in China’s PV industry in its early growth stage? Renew Energy 2014; 72: 188-94.
[29]
Frisio DG, Ferrazzi G, Ventura V, Vigani M. Public vs private agbiotech research in the United States and European Union, 2002-2009. AgBioForum 2010; 13(4): 333-42.
[30]
Naldi M, Flamini M. The CR4 index and the interval estimation of the Herfindahl-Hirschman Index: an empirical comparison 2014.
[31]
Rhoades SA. The herfindahl-hirschman index. Fed Reserve Bull 1993; 79: 188.
[32]
USDA. China Moving Towards Commercialization of Its Own Biotechnology Crops Gain Report 2017; CH16065.
[33]
Han F, Shelton AM, Zhou D. How China can enhance adoption of biotech crops. Nat Biotechnol 2016; 34(7): 693.
[34]
Huang J, Yang G. Understanding recent challenges and new food policy in China. Glob Food Secur 2017; 12: 119-26.
[35]
James C. Global status of commercialized Biotech/ GM crops: 2016; ISAAA Brief 52.
[36]
Guohua L, Yong Z, Huan Z. Method for culturing stripe disease resistant rice by using RNAi technology. CN2011187225. 2011.
[37]
Rotenberg D, Whitfield AE, Bockus WW, Chumley FG, Acosta-Leal R. Multigenic transgenic resistance to cereal viruses by rna-interference. WO2017192857. 2017.
[38]
Chen W, Fan X, Liu L, Wang K. Method for improving content of lysine in maize by using zein gene ribonucleic acid interference (RNAi) vector. CN20121010544. 2012.
[39]
Ren P, Huang X, Chaudhuri S, Talton L, Mcmillan J. Compositions and methods using RNA interference for control of nematodes in plants. WO2005US05756. 2005.
[40]
Xiaoya C, Yingbo M, Zhiping L, Lingjian W. Method for modifying insect resistance of plants by utilizing rnai technique. US2010005 0294A1. 2010.