[1]
Mc Ewen, B.S. Endocrine effects on the brain and their relationship
to behavior. In: Brain Neurochemistry, 8th ed; Brady, S.T.; Siegel,
G.J.; Albers, R.W.; Price, D.L., Eds.; Academic Press: Oxford, UK,
2012, pp. 945-965.
[2]
Kalantaridou, S.N.; Makrigiannakis, A.; Zoumakis, E.; Chrousos, G.P. Stress and the female reproductive system. J. Reprod. Immunol., 2004, 62(1-2), 61-68.
[3]
Shah, A.; Jhawar, S.S.; Goel, A. Analysis of the anatomy of the Papez circuit and adjoining limbic system by fiber dissection techniques. J. Clin. Neurosci., 2012, 19(2), 289-298.
[4]
Miczek, K.A. The psychopharmacology of aggression. New Directions in Behavioral Pharmacology; Iversen, L.L.; Iversen, S.D; Snyder, S.H., Ed.; Plenum Press: New York, London, 1987, Vol. 19, pp. 183-277.
[5]
Gregg, T.R.; Siegel, A. Brain structures and neurotransmitters regulating aggression in cats: implications for human aggression. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2001, 25(1), 91-140.
[6]
Siever, L.J. Neurobiology of aggression and violence. Am. J. Psychiatry, 2008, 165(4), 429-442.
[7]
Raisman, G.; Cowan, W.M.; Powell, T.P.S. An experimental analysis of the efferent projection of the hippocampus. Brain, 1966, 89(1), 83-108.
[8]
Raisman, G. The connexions of the septum. Brain, 1966, 89(2), 317-348.
[9]
Raisman, G. An experimental study of the projection of the amygdala to the accessory olfactory bulb and its relationship to the concept of a dual olfactory system. Exp. Brain Res., 1972, 14(4), 395-408.
[10]
Liu, M.G.; Chen, J. Roles of the hippocampal formation in pain information processing. Neurosci. Bull., 2009, 25(5), 237-266.
[11]
Rothfield, L.; Harman, P.J. On the relation of the hippocampal-fornix system to the control of rage responses in cats. J. Comp. Neurol., 1954, 101(2), 265-282.
[12]
Cohen, R.A. Neural mechanisms of attention.The Neurophysiology of Attention; Cohen, R.A., Ed.; Springer: New York, 2014, pp. 228-233.
[13]
Myers, R.D. Emotional and autonomic responses following hypothalamic chemical stimulation. Can. J. Psychol., 1964, 18, 6-14.
[14]
Nagy, J.; Decsi, L. Simultaneous chemical stimulation of the hypothalamus and dorsal hippocampus in the waking cat. Pharmacol. Biochem. Behav., 1974, 2(3), 285-292.
[15]
Hull, E.M.; Muschamp, J.W.; Sato, S. Dopamine and serotonin: influences on male sexual behavior. Physiol. Behav., 2004, 83(2), 291-307.
[16]
Davidson, J.M. Activation of the male rat’s sexual behavior by intracerebral implantation of androgen. Endocrinology, 1966, 79(4), 783-794.
[17]
Hansen, S.; Köhler, C.; Goldstein, M.; Steinbusch, H.V. Effects of ibotenic acid-induced neuronal degeneration in the medial preoptic area and the lateral hypothalamic area on sexual behavior in the male rat. Brain Res., 1982, 239(1), 213-232.
[18]
Motofei, I.G.; Rowland, D.L. The ventral-hypothalamic input route: a common neural network for abstract cognition and sexuality. BJU Int., 2014, 113(2), 296-303.
[19]
Dominguez, J.M.; Hull, E.M. Dopamine, the medial preoptic area, and male sexual behavior. Physiol. Behav., 2005, 86(3), 356-368.
[20]
van Furth, W.R.; van Emst, M.G.; van Ree, J.M. Opioids and sexual behavior of male rats: involvement of the medial preoptic area. Behav. Neurosci., 1995, 109(1), 123-134.
[21]
Mallick, H.; Manchanda, S.K.; Kumar, V.M. β-adrenergic modulation of male sexual behavior elicited from the medial preoptic area in rats. Behav. Brain Res., 1996, 74(1-2), 181-187.
[22]
Kow, L.M.; Pfaff, D.W. Mapping of neural and signal transduction pathways for lordosis in the search for estrogen actions on the central nervous system. Behav. Brain Res., 1998, 92(2), 169-180.
[23]
Simerly, R.B.; Chang, C.; Muramatsu, M.; Swanson, L.W. Distribution of androgen and estrogen receptor mRNA-containing cells in the rat brain: an in situ hybridization study. J. Comp. Neurol., 1990, 294(1), 76-95.
[24]
Kondo, Y. Lesions of the medial amygdala produce severe impairment of copulatory behavior in sexually inexperienced male rats. Physiol. Behav., 1992, 51(5), 939-943.
[25]
de Jonge, F.H.; Oldenburger, W.P.; Louwerse, A.L.; Van de Poll, N.E. Changes in male copulatory behavior after sexual exciting stimuli: effects of medial amygdala lesions. Physiol. Behav., 1992, 52(2), 327-332.
[26]
Kondo, Y.; Arai, Y. Functional association between the medial amygdala and the medial preoptic area in regulation of mating behavior in the male rat. Physiol. Behav., 1995, 57(1), 69-73.
[27]
Bialy, M.; Sachs, B.D. Androgen implants in medial amygdala briefly maintain noncontact erection in castrated male rats. Horm. Behav., 2002, 42(3), 345-355.
[28]
Bialy, M.; Nikolaev-Diak, A.; Kalata, U.; Nikolaev, E. Blockade of androgen receptor in the medial amygdala inhibits noncontact erections in male rats. Physiol. Behav., 2011, 103(3-4), 295-301.
[29]
Kondo, Y.; Sachs, B.D.; Sakuma, Y. Importance of the medial amygdala in rat penile erection evoked by remote stimuli from estrous females. Behav. Brain Res., 1997, 88(2), 153-160.
[30]
Kanda, S.; Oka, Y. Structure, synthesis, and phylogeny of kisspeptin and its receptor. Adv. Exp. Med. Biol., 2013, 784, 9-26.
[31]
Kauffman, A.S.; Park, J.H.; McPhie-Lalmansingh, A.A.; Gottsch, M.L.; Bodo, C.; Hohmann, J.G.; Pavlova, M.N.; Rohde, A.D.; Clifton, D.K.; Steiner, R.A.; Rissman, E.F. The kisspeptin receptor GPR54 is required for sexual differentiation of the brain and behavior. J. Neurosci., 2007, 27(33), 8826-8835.
[32]
Thompson, E.L.; Patterson, M.; Murphy, K.G.; Smith, K.L.; Dhillo, W.S.; Todd, J.F.; Ghatei, M.A.; Bloom, S.R. Central and peripheral administration of kisspeptin-10 stimulates the hypothalamic-pituitary-gonadal axis. J. Neuroendocrinol., 2004, 16(10), 850-858.
[33]
Dhillo, W.S.; Chaudhri, O.B.; Patterson, M.; Thompson, E.L.; Murphy, K.G.; Badman, M.K.; McGowan, B.M.; Amber, V.; Patel, S.; Ghatei, M.A.; Bloom, S.R. Kisspeptin-54 stimulates the hypothalamic-pituitary gonadal axis in human males. J. Clin. Endocrinol. Metab., 2005, 90(12), 6609-6615.
[34]
Gresham, R.; Li, S.; Adekunbi, D.A.; Hu, M.; Li, X.F.; O’Byrne, K.T. Kisspeptin in the medial amygdala and sexual behavior in male rats. Neurosci. Lett., 2016, 627, 13-17.
[35]
Bermant, G.; Glickman, S.E.; Davidson, J.M. Effects of limbic lesions on copulatory behavior of male rats. J. Comp. Physiol. Psychol., 1968, 65(1), 118-125.
[36]
Kim, C.; Choi, H.; Kim, J.K.; Chang, H.K.; Park, R.S.; Kang, I.Y. General behavioral activity and its component patterns in hippocampectomized rats. Brain Res., 1970, 19(3), 379-394.
[37]
Smock, T.; Albeck, D.; Stark, P. A peptidergic basis for sexual behavior in mammals. Prog. Brain Res., 1998, 119, 467-481.
[38]
Bermant, G.; Davidson, J.M. Biological Bases of Sexual Behavior; Harper and Row: New York, 1974.
[39]
Waxenberg, S.E.; Drellich, M.G.; Sutherland, A.M. The role of hormones in human behavior. I. Changes in female sexuality after adrenalectomy. J. Clin. Endocrinol. Metab., 1959, 19(2), 193-202.
[40]
Cappelletti, M.; Wallen, K. Increasing women’s sexual desire: The comparative effectiveness of estrogens and androgens. Horm. Behav., 2016, 78, 178-193.
[41]
Montgomery, K.A. Sexual desire disorders. Psychiatry (Edgmont Pa.), 2008, 5(6), 50-55.
[42]
Everitt, B.J.; Herbert, J.; Hamer, J.D. Sexual receptivity of bilaterally adrenalectomised female rhesus monkeys. Physiol. Behav., 1972, 8(3), 409-415.
[43]
Macfarland, L.A.; Mann, D.R. The inhibitory effects of ACTH and adrenalectomy on reproductive maturation in female rats. Biol. Reprod., 1977, 16(3), 306-314.
[44]
Mann, D.R.; Korowitz, C.D.; Barraclough, C.A. Adrenal gland involvement in synchronizing the preovulatory release of LH in rats. Proc. Soc. Exp. Biol. Med., 1975, 150(1), 115-120.
[45]
Mann, D.R.; Barraclough, C.A. Changes in peripheral plasma progesterone during the rat 4-day estrous cycle: An adrenal diurnal rhythm. Proc. Soc. Exp. Biol. Med., 1973, 142(4), 1226-1229.
[46]
Resko, J.A. Endocrine control of adrenal progesterone secretion in the ovariectomized rat. Science, 1969, 164(3875), 70-71.
[47]
Moss, R.L.; McCann, S.M. Action of luteinizing hormone-releasing factor (lrf) in the initiation of lordosis behavior in the estrone-primed ovariectomized female rat. Neuroendocrinology, 1975, 17(4), 309-318.
[48]
Chantaraprateep, P.; Thibier, M. Effects of dexamethasone on the responses of luteinizing hormone and testosterone to two injections of luteinizing hormone releasing hormone in young postpubertal bulls. J. Endocrinol., 1978, 77(3), 389-395.
[49]
Umathe, S.N.; Bhutada, P.S.; Jain, N.S.; Shukla, N.R.; Mundhada, Y.R.; Dixit, P.V. Gonadotropin-releasing hormone agonist blocks anxiogenic-like and depressant-like effect of corticotrophin-releasing hormone in mice. Neuropeptides, 2008, 42(4), 399-410.
[50]
Umathe, S.N.; Bhutada, P.S.; Jain, N.S.; Dixit, P.V.; Wanjari, M.M. Effects of central administration of gonadotropin-releasing hormone agonists and antagonist on elevated plus-maze and social interaction behavior in rats. Behav. Pharmacol., 2008, 19(4), 308-316.
[51]
Piekaski, D.J.; Zhao, S.; Jennings, K.J. Gonadotropin-inhibitory hormone reduces sexual motivation but not lordosis in female Syrian hamsters. Horm. Behav., 2013, 64, 501-510.
[52]
Estrada-Camarena, E.; López-Rubalcava, C.; Vega-Rivera, N.; Récamier-Carballo, S.; Fernández-Guasti, A. Antidepressant effects of estrogens: A basic approximation. Behav. Pharmacol., 2010, 21(5-6), 451-464.
[53]
Derntl, B.; Windischberger, C.; Robinson, S.; Kryspin-Exner, I.; Gur, R.C.; Moser, E.; Habel, U. Amygdala activity to fear and anger in healthy young males is associated with testosterone. Psychoneuroendocrinology, 2009, 34(5), 687-693.
[54]
Bancroft, J. Androgen Heal. Dis; Human Press: Totowa, 2003.
[55]
Sofroniew, M.V. Morphology of vasopressin and oxytocin neurones and their central and vascular projections. Prog. Brain Res., 1983, 60, 101-114.
[56]
Iovino, M.; Guastamacchia, E.; Giagulli, V.A.; Licchelli, B.; Triggiani, V. Vasopressin secretion control: central neural pathways, neurotransmitters and effects of drugs. Curr. Pharm. Des., 2012, 18(30), 4714-4724.
[57]
Iovino, M.; Guastamacchia, E.; Giagulli, V.A.; Licchelli, B.; Iovino, E.; Triggiani, V. Molecular mechanisms involved in the control of neurohypophyseal hormones secretion. Curr. Pharm. Des., 2014, 20(42), 6702-6713.
[58]
Iovino, M.; Giagulli, V.A.; Licchelli, B.; Iovino, E.; Guastamacchia, E.; Triggiani, V. Synaptic inputs of neural afferent pathways to vasopressin- and oxytocin-secreting neurons of supraoptic and paraventricular hypothalamic nuclei. Endocr. Metab. Immune Disord. Drug Targets, 2016, 16(4), 276-287.
[59]
Neumann, I.D.; Landgraf, R. Balance of brain oxytocin and vasopressin: implications for anxiety, depression, and social behaviors. Trends Neurosci., 2012, 35(11), 649-659.
[60]
Appenrodt, E.; Schnabel, R.; Schwarzberg, H. Vasopressin administration modulates anxiety-related behavior in rats. Physiol. Behav., 1998, 64(4), 543-547.
[61]
Kirsch, P.; Esslinger, C.; Chen, Q.; Mier, D.; Lis, S.; Siddhanti, S.; Gruppe, H.; Mattay, V.S.; Gallhofer, B.; Meyer-Lindenberg, A. Oxytocin modulates neural circuitry for social cognition and fear in humans. J. Neurosci., 2005, 25(49), 11489-11493.
[62]
Domes, G.; Heinrichs, M.; Gläscher, J.; Büchel, C.; Braus, D.F.; Herpertz, S.C. Oxytocin attenuates amygdala responses to emotional faces regardless of valence. Biol. Psychiatry, 2007, 62(10), 1187-1190.
[63]
Caldwell, H.K.; Young, W.S. Oxytocin and vasopressin: genetics and behavioral implications.Neuroactive proteins and peptides; Lim, R., Ed.; Springer: New York, 2006, pp. 573-607.
[64]
Iovino, M.; Messana, T.; De Pergola, G.; Iovino, E.; Dicuonzo, F.; Guastamacchia, E.; Giagulli, V.A.; Triggiani, V. The role of neurohypophyseal hormones vasopressin and oxytocin in neuropsychiatric disorders. Endocr. Metab. Immune Disord. Drug Targets, 2018, 18(4), 341-347.
[65]
Bisagno, V.; Cadet, J.L. Stress, gender, and addiction: potential role of CRF, oxytocin and arginin-vasopressin. Behav. Pharmacol., 2014, 25, 445-457.
[66]
Thibonnier, M.; Conarty, D.M.; Preston, J.A.; Wilkins, P.L.; Berti-Mattera, L.N.; Mattera, R. Molecular pharmacology of human vasopressin receptors. Adv. Exp. Med. Biol., 1998, 449, 251-276.
[67]
Peter, J.; Burbach, H.; Adan, R.A.; Lolait, S.J.; van Leeuwen, F.W.; Mezey, E.; Palkovits, M.; Barberis, C. Molecular neurobiology and pharmacology of the vasopressin/oxytocin receptor family. Cell. Mol. Neurobiol., 1995, 15(5), 573-595.
[68]
Holmes, C.L.; Landry, D.W.; Granton, J.T. Science review: Vasopressin and the cardiovascular system part 1--receptor physiology. Crit. Care, 2003, 7(6), 427-434.
[69]
Albers, H.E.; Pollock, J.; Simmons, W.H.; Ferris, C.F.A.A. V1-like receptor mediates vasopressin-induced flank marking behavior in hamster hypothalamus. J. Neurosci., 1986, 6(7), 2085-2089.
[70]
Newman, S.W. The medial extended amygdala in male reproductive behavior. A node in the mammalian social behavior network. Ann. N. Y. Acad. Sci., 1999, 877, 242-257.
[71]
Albers, H.E. The regulation of social recognition, social communication and aggression: vasopressin in the social behavior neural network. Horm. Behav., 2012, 61(3), 283-292.
[72]
Bosch, O.J.; Neumann, I.D. Both oxytocin and vasopressin are mediators of maternal care and aggression in rodents: from central release to sites of action. Horm. Behav., 2012, 61(3), 293-303.
[73]
Mayes, C.R.; Watts, A.G.; McQueen, J.K.; Fink, G.; Charlton, H.M. Gonadal steroids influence neurophysin II distribution in the forebrain of normal and mutant mice. Neuroscience, 1988, 25(3), 1013-1022.
[74]
de Vries, G.J.; Buijs, R.M.; Sluiter, A.A. Gonadal hormone actions on the morphology of the vasopressinergic innervation of the adult rat brain. Brain Res., 1984, 298(1), 141-145.
[75]
Young, L.J. Wang, Z.; Cooper, T.T.; Albers, H.E. Vasopressin receptor (V1a) in the hamster brain: synthesis, transport and transcriptional regulation by androgen. J. Neuroendocrinol., 2000, 12, 1179-1185.
[76]
Huber, D.; Veinante, P.; Stoop, R. Vasopressin and oxytocin excite distinct neuronal populations in the central amygdala. Science, 2005, 308(5719), 245-248.
[77]
Viviani, D.; Stoop, R. Opposite effects of oxytocin and vasopressin on the emotional expression of the fear response.Advances in Vasopressin and Oxytocin From Genes to Behavior to Disease; Neuman, I.D; Landgraf, R., Ed.; Elsevier: Amsterdam, 2008, pp. 207-218.
[78]
Phelps, E.A.; LeDoux, J.E. Contributions of the amygdala to emotion processing: from animal models to human behavior. Neuron, 2005, 48(2), 175-187.
[79]
McGinnis, M.; Nance, D.M.; Gorski, R.A. Olfactory, septal and amygdala lesions alone or in combination: effects on lordosis behavior and emotionality. Physiol. Behav., 1978, 20(4), 435-440.
[80]
Schwartzbaum, J.S.; Gay, P.E. Interacting behavioral effects of septal and amygdaloid lesions in the rat. J. Comp. Physiol. Psychol., 1966, 61(1), 59-65.
[81]
Kheirbek, M.A.; Hen, R. Dorsal vs ventral hippocampal neurogenesis: implications for cognition and mood. Neuropsychopharmacology, 2011, 36(1), 373-374.
[82]
Cooper, P. Physiology and Pathophysiology of the Endocrine Brain and Hypothalamus.Principles and Practice of Endocrinology and Metabolism, 3rd ed; Becker, K., Ed.; Lippincott Williams and Wilkins: Philadelphia, USA, 2001, pp. 90-97.
[83]
Lewis, P.R.; Shute, C.C. The cholinergic limbic system: projections to hippocampal formation, medial cortex, nuclei of the ascending cholinergic reticular system, and the subfornical organ and supra-optic crest. Brain, 1967, 90(3), 521-540.
[84]
Mead, L.A.; Vanderwolf, C.H. Hippocampal electrical activity in the female rat: the estrous cycle, copulation, parturition, and pup retrieval. Behav. Brain Res., 1992, 50(1-2), 105-113.
[85]
Strange, B.A.; Hurlemann, R.; Dolan, R.J. An emotion-induced retrograde amnesia in humans is amygdala- and β-adrenergic-dependent. Proc. Natl. Acad. Sci. USA, 2003, 100(23), 13626-13631.
[86]
Strange, B.A.; Dolan, R.J. β-adrenergic modulation of emotional memory-evoked human amygdala and hippocampal responses. Proc. Natl. Acad. Sci. USA, 2004, 101(31), 11454-11458.
[87]
Leuner, B.; Glasper, E.R.; Gould, E. Sexual experience promotes adult neurogenesis in the hippocampus despite an initial elevation in stress hormones. PLoS One, 2010, 5(7), e11597.
[88]
Clarkson, J.; d’Anglemont de Tassigny, X.; Colledge, W.H.; Caraty, A.; Herbison, A.E. Distribution of kisspeptin neurones in the adult female mouse brain. J. Neuroendocrinol., 2009, 21(8), 673-682.
[89]
Yang, L.; Comninos, A.N.; Dhillo, W.S. Intrinsic links among sex, emotion, and reproduction. Cell. Mol. Life Sci., 2018, 75(12), 2197-2210.
[90]
Pineda, R.; Plaisier, F.; Millar, R.P.; Ludwig, M. Amygdala kisspeptin neurons: putative mediators of olfactory control of the gonadotropic axis. Neuroendocrinology, 2017, 104(3), 223-238.
[91]
Comninos, A.N.; Wall, M.B.; Demetriou, L.; Shah, A.J.; Clarke, S.A.; Narayanaswamy, S.; Nesbitt, A.; Izzi-Engbeaya, C.; Prague, J.K.; Abbara, A.; Ratnasabapathy, R.; Salem, V.; Nijher, G.M.; Jayasena, C.N.; Tanner, M.; Bassett, P.; Mehta, A.; Rabiner, E.A.; Hönigsperger, C.; Silva, M.R.; Brandtzaeg, O.K.; Lundanes, E.; Wilson, S.R.; Brown, R.C.; Thomas, S.A.; Bloom, S.R.; Dhillo, W.S. Kisspeptin modulates sexual and emotional brain processing in humans. J. Clin. Invest., 2017, 127(2), 709-719.
[92]
George, J.T.; Veldhuis, J.D.; Tena-Sempere, M.; Millar, R.P.; Anderson, R.A. Exploring the pathophysiology of hypogonadism in men with type 2 diabetes: kisspeptin-10 stimulates serum testosterone and LH secretion in men with type 2 diabetes and mild biochemical hypogonadism. Clin. Endocrinol. (Oxf.), 2013, 79(1), 100-104.
[93]
Jayasena, C.N.; Abbara, A.; Veldhuis, J.D.; Comninos, A.N.; Ratnasabapathy, R.; De Silva, A.; Nijher, G.M.; Ganiyu-Dada, Z.; Mehta, A.; Todd, C.; Ghatei, M.A.; Bloom, S.R.; Dhillo, W.S. Increasing LH pulsatility in women with hypothalamic amenorrhoea using intravenous infusion of Kisspeptin-54. J. Clin. Endocrinol. Metab., 2014, 99(6), E953-E961.
[94]
Sonigo, C.; Bouilly, J.; Carré, N.; Tolle, V.; Caraty, A.; Tello, J.; Simony-Conesa, F.J.; Millar, R.; Young, J.; Binart, N. Hyperprolactinemia-induced ovarian acyclicity is reversed by kisspeptin administration. J. Clin. Invest., 2012, 122(10), 3791-3795.