Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

Research Article

Molecularly Imprinted Polymer and Computational Study of (E)-4-(2- cyano-3-(dimethylamino)acryloyl)benzoic Acid from Poly(ethylene terephthalate) Plastic Waste

Author(s): Asmaa M. Fahim*, Bartłomiej Wasiniak and Jerzy P. Łukaszewicz

Volume 16, Issue 2, 2020

Page: [119 - 137] Pages: 19

DOI: 10.2174/1573411015666190131123843

Price: $65

Abstract

Background: Molecularly imprinted polymers (MIPs) are utilized in the separation of a pure compound from complex matrices. A stable template-monomer complex generates MIPs with the highest affinity and selectivity for the template. In this investigation, degradation of Poly(ethylene terephthalate) PET afforded the (E)-4-(2-cyano-3-(dimethylamino) acryloyl) benzoic acid (4) (TAM) which used TAM as template which interacts with Methacrylic Acid (MAA) monomer, in the presence of CH3CN as progen. The TAM-MMA complex interactions are dependent on stable hydrogen bonding interaction between the carboxylic acid group of TAM and the hydroxyl group of MMA with minimal interference of porogen CH3CN. The DFT/B3LYP/6-31+G model chemistry was used to optimize their structures and frequency calculations. The binding energies between TAM with different monomers showed the most stable molar ratio of 1:4 which was confirmed through experimental analysis.

Methods: The present work describes the synthesis of (E)-4-(2-cyano-3-(dimethylamino) acryloyl) benzoic acid (4) (TAM) from PET waste and formation of molecularly imprinted polymer from TAM with the methacrylic acid monomer. The optimization of molecular imprinted was stimulated via DFT/B3LYP/6-31G (d). The imprinted polymer film was characterized via thermal analysis, pore size, FT-IR and scanning electron microscopy.

Results: The most stable molecularly imprinted polymers (MIPs) showed binding energy of TAM(MMA4)=-2063.456 KJ/mol with a small value of mesopores (10-100 Å). Also, the sorption capability of TAM-MIPs showed 6.57 mg/g using STP-MIP-9VC. Moreover, the average pore size ranged between 0.2-1 nm with the BET surface about 300 m2/g.

Conclusion: The proposed TAM exhibited a high degree of selectivity for MMA in comparison with other different monomers through hydrogen bond interaction, which was thermally stable, good reproducibility and excellent regeneration capacity and elucidated in the computational study and analytical analysis.

Keywords: BJH and Computational study, Poly(ethylene terephthalate)PET, SEM, TAM-MIPs, TGA, plastic waste.

Graphical Abstract

[1]
Komiyama.M.T.; Takeuchi. T.; Mukawa, H. Molecular Imprinting. From Fundamentals to Applications; Wiley-VCH: Weinheim, 2003.
[2]
Kopciuch, R.G.; Sadowski, R.; Piroska, A.; and Buszewski, B. Applications of molecularly imprinted polymers for isolation of estrogens from environmental water samples. Curr. Anal. Chem., 2016, 12, 315-323.
[http://dx.doi.org/10.2174/1573411012666151009195215]
[3]
Li, X.; Ma, X.; Huang, R.; Xie, X.; Guo, L.; Zhang, M. Synthesis of a molecularly imprinted polymer on mSiO2 @Fe3O4 for the selective adsorption of atrazine. J. Sep. Sci., 2018, 41(13), 2837-2845.
[http://dx.doi.org/10.1002/jssc.201800146] [PMID: 29676847]
[4]
Xie, X.; Ma, X.; Guo, L.; Fan, Y.; Zeng, G.; Zhang, M.; Li, J. Novel magnetic multi-templates molecularly imprinted polymer for selective and rapid removal and detection of alkylphenols in water. Chem. Eng. J., 2019, 357, 56-65.
[http://dx.doi.org/10.1016/j.cej.2018.09.080]
[5]
Haupt, K.; Mosbach, K. Molecularly imprinted polymers and their use in biomimetic sensors. Chem. Rev., 2000, 100(7), 2495-2504.
[http://dx.doi.org/10.1021/cr990099w] [PMID: 11749293]
[6]
Yáñez-Sedeño, P.; Campuzano, S.; Pingarrón, J.M. Electrochemical sensors based on magnetic molecularly imprinted polymers: A review. Anal. Chim. Acta, 2017, 960, 1-17.
[http://dx.doi.org/10.1016/j.aca.2017.01.003] [PMID: 28193351]
[7]
Khattab, T.A.; Aly, S.A.; Klapötke, T.M. Naked-eye facile colorimetric detection of alkylphenols using Fe (III)-impregnated silica-based strips. Chem. Pap., 2018, 72(6), 1553-1559.
[http://dx.doi.org/10.1007/s11696-018-0409-7]
[8]
Bossi, A.; Bonini, F.; Turner, A.P.F.; Piletsky, S.A. Molecularly imprinted polymers for the recognition of proteins: The state of the art. Biosens. Bioelectron., 2007, 22(6), 1131-1137.
[http://dx.doi.org/10.1016/j.bios.2006.06.023] [PMID: 16891110]
[9]
Abou-Yousef, H.; Khattab, T.A.; Youssef, Y.A.; Al-Balakocy, N.; Kamel, S. Novel cellulose-based halochromic test strips for naked-eye detection of alkaline vapors and analytes. Talanta, 2017, 170, 137-145.
[http://dx.doi.org/10.1016/j.talanta.2017.04.002] [PMID: 28501149]
[10]
Tamayo, F.G.; Turiel, E.; Martín-Esteban, A. Molecularly imprinted polymers for solid-phase extraction and solid-phase microextraction: recent developments and future trends. J. Chromatogr. A, 2007, 1152(1-2), 32-40.
[http://dx.doi.org/10.1016/j.chroma.2006.08.095] [PMID: 17010356]
[11]
Khattab, T.A.; Rehan, M.; Aly, S.A.; Hamouda, T.; Haggag, K.M.; Klapötke, T.M. Fabrication of PAN-TCF-hydrazone nanofibers by solution blowing spinning technique: Naked-eye colorimetric sensor. J. Environ. Chem. Eng., 2017, 5(3), 2515-2523.
[http://dx.doi.org/10.1016/j.jece.2017.05.001]
[12]
Ashley, J.; Shahbazi, M.A.; Kant, K.; Chidambara, V.A.; Wolff, A.; Bang, D.D.; Sun, Y. Molecularly imprinted polymers for sample preparation and biosensing in food analysis: Progress and perspectives. Biosens. Bioelectron., 2017, 91, 606-615.
[http://dx.doi.org/10.1016/j.bios.2017.01.018] [PMID: 28103516]
[13]
Sellergren, B. Molecularly imprinted polymers. Man-made; Elsevier: Amsterdam, 2011, p. 113.
[14]
Yoon, S.D.; Byun, H.S. Molecularly imprinted polymers for selective separation of acetaminophen and aspirin by using supercritical fluid technology. Chem. Eng. J., 2013, 226, 171-180.
[http://dx.doi.org/10.1016/j.cej.2013.04.052]
[15]
Farrington, K.; Regan, F. Investigation of the nature of MIP recognition: the development and characterisation of a MIP for Ibuprofen. Biosens. Bioelectron., 2007, 22(6), 1138-1146.
[http://dx.doi.org/10.1016/j.bios.2006.06.025] [PMID: 17011773]
[16]
Masque.N, Marce.R. M and Borrull, F. Molecularly imprinted polymers: New tailor-made materials for selective solid-phase extraction. Trac-Trend. Anal. Chem., 2001, 20, 477-486.
[http://dx.doi.org/10.1016/S0165-9936(01)00062-0]
[17]
Dacrory, S.; Fahim, A.M. Synthesis, anti-proliferative activity, computational studies of tetrazole cellulose utilizing different homogenous catalyst. Carbohydr. Polym., 2020, 229, 115537
[http://dx.doi.org/10.1016/j.carbpol.2019.115537] [PMID: 31826405]
[18]
Wulff, G. Molecular imprinting in cross-linked materials with the aid of molecular templates - a way towards artificial antibodies. Angew. Chem. Int. Ed. Engl., 1995, 34, 1812-1832.
[http://dx.doi.org/10.1002/anie.199518121]
[19]
(a)Fahim, A.M.; Farag, A.M. Synthesis, antimicrobial evaluation, molecular docking and theoretical calculations of novel pyrazolo[1,5-a]pyrimidine derivatives. J. Mol. Struct., 2020, 1199127025
[http://dx.doi.org/10.1016/j.molstruc.2019.127025]
(b)Fahim, A.M.; Shalaby, M.; Ibrahim, M.A. Microwave-assisted synthesis of novel 5-aminouracil-based compound with DFT calculations. J. Mol. Struct., 2019, 1194, 211-226.
[http://dx.doi.org/10.1016/j.molstruc.2019.04.078]
[20]
Andersson, L.I. Molecular imprinting: developments and applications in the analytical chemistry field. J. Chromatogr. B Biomed. Sci. Appl., 2000, 745(1), 3-13.
[http://dx.doi.org/10.1016/S0378-4347(00)00135-3] [PMID: 10997701]
[21]
EL-Sharif, H.F.; Hawkins, D.M.; Stevenson, D.; Reddy, S.M. Determination of protein binding affinities within hydrogel-based molecularly imprinted polymers (HydroMIPs). Phys. Chem. Chem. Phys., 2014, 16(29), 15483-15489.
[http://dx.doi.org/10.1039/C4CP01798F] [PMID: 24950144]
[22]
Li, X.; Ma, X.; Huang, R.; Xie, X.; Guo, L.; Zhang, M. Synthesis of a molecularly imprinted polymer on m SiO2@Fe3O4for the selective adsorption of atrazine. J. Sep. Sci., 2016, 41, 2837-2845.
[23]
Meier, F.; Schott, B.; Riedel, D.; Mizaikoff, B. Computational and experimental study on the influence of the porogen on the selectivity of 4-nitrophenol molecularly imprinted polymers. Anal. Chim. Acta, 2012, 744(744), 68-74.
[http://dx.doi.org/10.1016/j.aca.2012.07.020] [PMID: 22935376]
[24]
(a)Griffete, N.; Li, H.; Lamouri, A.; Redeuilh, C.; Chen, K.; Dong, C.Z.; Nowak, S.; Ammar, S.; Mangeney, C. Magnetic nanocrystals coated by molecularly imprinted polymers for the recognition of bisphenol A. J. Mater. Chem., 2012, 22, 1807-1811.
[http://dx.doi.org/10.1039/C1JM14139B]
(b)Fahim, A.M.; Farag, A.M.; Shaaban, M.R.; Eman, A.; Ragab, E.A. Microwave-assisted synthesis of pyrazolo[1,5-a]pyrimidine, triazolo[1,5-a]pyrimidine, pyrimido[1,2-a]benzimdazole, triazolo[5,1-c][1,2,4]triazine and imidazo[2,1-c][1,2,4]triazine. Curr. Microw. Chem., 2018, 5(2), 111-119.
[http://dx.doi.org/10.2174/2213335605666180425144009]
[25]
(a)Farag, A.M.; Fahim, A.M. Synthesis and biological evaluation with DFT calculation of Novel Pyrazole and Pyrimidine derivatives. J. Mol. Struct., 2019, 1179, 304-314.
[http://dx.doi.org/10.1016/j.molstruc.2018.11.008]
(b)Fahim, A.M.; Shalaby, M.A. Synthesis, Biological Evaluation, Molecular docking and DFT Calculations of Novel Benzenesulfonamide derivatives. J. Mol. Struct., 2019, 1176, 408-421.
[http://dx.doi.org/10.1016/j.molstruc.2018.08.087]
(c)Zayed, E.A.; Zayed, M.A.; Fahim, A.M.; El‐Samahy, F.A. Novel macrocyclic Schiff base and its complexes having N 2 O 2 group of donor atoms: Synthesis, characterization and anticancer screening. Appl. Organomet. Chem., 2017, 31, e3694
[http://dx.doi.org/10.1002/aoc.3694]
[26]
(a)Fahim, A.M.; Farag, A.M.; Shaaban, M.R.; Eman, A. Ragab, E.A. Regioselective synthesis and DFT study of novel fused heterocyclic utilizing Thermal heating and Microwave Irradiation. Afindad, 2018, 75(582), 148-159.
(b)Fahim, A.M.; Farag, A.M.; Shaaban, M.R.; Eman, A. Ragab, E.A. Synthesis and DFT study of novel pyrazole, thiophene, 1,3-thiazole and 1,3,4-thiadiazole derivatives. Eur. J. Chem., 2018, 1(9), 30-38.
[http://dx.doi.org/10.5155/eurjchem.9.1.30-38.1675]
(c)Fahim, A.M. Microwave-assisted regioselective synthesis and biological evaluation of pyrano[2,3-c]pyridine derivatives utilizing DMAP as a catalyst. Online J. Biol. Sci., 2017, 17(4), 39-404.
[27]
(a)Fahim, A.M.; El-Sayed, R.E.A.; Farag, A.M.; Nawwar, G.A. Synthesis, biological evaluation of 1,3,4-oxadiazole, triazole and uracil derivatives from poly (ethylene terephthalate) waste. Egypt. J. Chem., 2016, 59(3), 285-303.
[http://dx.doi.org/10.21608/ejchem.2016.1048]
(b)Fahim, A.M.; Farag, A.M.; Nawwar, G.A. PET waste recycling as chemical feedstock: Synthesis and antimicrobial activity of new compounds with anticipated industrial use. J. Appl. Chem., 2013, 2(3), 502-510.
(c)Fahim, A.M.; Yakout, E.; Nawwar, G.A. Facile synthesis of in-vivo insecticidal and antimicrobial evaluation of bis heterocyclic moiety from pet waste. Online J. Biol. Sci., 2014, 14(3), 194-206.
[http://dx.doi.org/10.3844/ojbsci.2014.196.208]
[28]
Fleming, I. Frontier Orbitals, and Organic Chemical Reactions; Wiley: London, 1976.
[29]
Griffith, J.S.; Orgel, L.E. Ligand-field theory. Q. Rev. Chem. Soc., 1975, 11, 381-393.
[http://dx.doi.org/10.1039/qr9571100381]
[30]
Abdel Ghani, N.T.; Mansour, A.M. Abdel-Ghani. Molecular structure of 2-chloromethyl-1H-benzimidazole hydrochloride: single crystal, spectral, biological studies, and DFT calculations. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2012, 86, 605-613.
[http://dx.doi.org/10.1016/j.saa.2011.11.024] [PMID: 22153740]
[31]
(a)Fahim, A.M.; Farag, A.M.; Nawwar, G.A.M.; Yakout, S.M.; Ragab, E.A. Chemistry of terephthalate derivatives: A review. Int. J. Environ. Waste Manag., 2019, 24(3) 1[IJEWM]
[http://dx.doi.org/10.1504/IJEWM.2019.103104]
(b)Fahim, A.M.; Farag, A.M.; Nawwar, G.A.M.; Yakout, S.M.; Ragab, E.A. Synthesis and DFT calculations of aza-Michael adducts obtained from degradation poly(methyl methacrylate) plastic wastes. Int. J. Environ. Waste Manag, 2019, 24(4), 1[IJEWM].
[http://dx.doi.org/10.1504/IJEWM.2019.103641]
(c)Fahim, A.M.; Farag, A.M.; Yakout, S.M.; Nawwar, G.A.M.; Ragab, E.A. Sun degradation and synthesis of new antimicrobial and antioxidant utilising poly (ethylene terephthalate) waste. Int. J. Environ. Waste Manag., 2018, 22(1-4), 239-259.
[32]
Ferrer, I.; Lanza, F.; Tolokan, A.; Horvath, V.; Sellergren, B.; Horvai, G.; Barcelo, D. Selective trace enrichment of chlorotriazine pesticides from natural waters and sediment samples using terbuthylazine molecularly imprinted polymers. Anal. Chem., 2000, 72(16), 3934-3941.
[http://dx.doi.org/10.1021/ac000015f] [PMID: 10959985]
[33]
Ibrahim, M.; Mahmoud, A.A. Computational note on the reactivity of some functional. Comput. Theor. Nanosci., 2009, 6, 1523-1526.
[http://dx.doi.org/10.1166/jctn.2009.1205]
[34]
Imamura, Y.; Nakai, H. Time-dependent density functional theory (TDDFT) calculations for core-excited states: Assessment of an exchange functional combining the Becke88 and van Leeuwen-Baerends-type functionals. Chem. Phys. Lett., 2006, 419, 297-303.
[http://dx.doi.org/10.1016/j.cplett.2005.11.084]
[35]
Muscat, J.; Wander, A.; Harrison, N.M. On the prediction of band gaps from hybrid functional theory. Chem. Phys. Lett., 2011, 342, 397-401.
[http://dx.doi.org/10.1016/S0009-2614(01)00616-9]
[36]
Nicholls, I.A.; Andersson, H.S.; Charlton, C.; Henschel, H.; Karlsson, B.C.G.; Karlsson, J.G.; O’Mahony, J.; Rosengren, A.M.; Rosengren, K.J.; Wikman, S. Theoretical and computational strategies for rational molecularly imprinted polymer design. Biosens. Bioelectron., 2009, 25(3), 543-552.
[http://dx.doi.org/10.1016/j.bios.2009.03.038] [PMID: 19443204]
[37]
Ahmadi, F.; Ahmadi, J.; Rahimi-Nasrabadi, M. Computational approaches to design a molecular imprinted polymer for high selective extraction of 3,4-methylenedioxymethamphetamine from plasma. J. Chromatogr. A, 2011, 1218(43), 7739-7747.
[http://dx.doi.org/10.1016/j.chroma.2011.08.020] [PMID: 21944846]
[38]
Nicholls, I.A.; Andersson, H.S.; Golker, K.; Henschel, H.; Karlsson, B.C.G.; Olsson, G.D.; Rosengren, A.M.; Shoravi, S.; Suriyanarayanan, S.; Wiklander, J.G.; Wikman, S. Rational design of biomimetic molecularly imprinted materials: theoretical and computational strategies for guiding nanoscale structured polymer development. Anal. Bioanal. Chem., 2011, 400(6), 1771-1786.
[http://dx.doi.org/10.1007/s00216-011-4935-1] [PMID: 21475943]
[39]
Viveiros, R.; Rebocho, S.; and Casimiro, T. Green strategies for molecularly imprinted polymer development. Polymers (Basel), 2018, 10(306), 1-27.
[40]
Watabe, Y.; Hosoya, K.; Tanaka, N.; Kubo, T.; Kondo, T.; Morita, M. Novel surface modified molecularly imprinted polymer focused on the removal of interference in environmental water samples for chromatographic determination. J. Chromatogr. A, 2005, 1073(1-2), 363-370.
[http://dx.doi.org/10.1016/j.chroma.2004.09.016] [PMID: 15909542]
[41]
Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Men-nucci, B.; Petersson, G.A.; Nakatsuji, H.; Caricato, M.; Hratchian, X.; Li, H.P.; Izmaylov, A.F.; Bloino, J.; Zheng, G.; Sonnenberg, J.L. Hada. M.; Ehara, M.; Toyota, K.; Fukuda. R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J.A.; Peralta, J.E.; Oglia-ro, F.; Bearpark, M.; Heyd, J.J.; Brothers, E.; Kudin, K.N.; Staroverov, V.N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J.C.; Iyengar, S.S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J.M.; Klene, M.; Knox, J.E.; Cross, J.B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Strat-mann, R.E.; Yazyev, O.; Austin, A.J.; Cammi, R.; Pomelli, C.; Ochterski, J.W.; Martin, R.L.; Morokuma, K.; Zakrzewski, V.G.; Voth, G.A.; Salvador, P.; Dannenberg, J.J.; Dapprich, S.; Daniels, A.D.; Farkas, O; Foresman, J.B.; Ortiz, J.V.; Cioslowski, J.; Fox, D.J. Gaussian09, Revision A.1, Gaussian, Inc., Wallingford, 2009.
[42]
Geerets, B.; Peeters, M.; van Grinsven, B.; Bers, K.; de Ceuninck, W.; Wagner, P. Optimizing the thermal read-out technique for MIP-based biomimetic sensors: Towards nanomolar detection limits. Sensors (Basel), 2013, 13(7), 9148-9159.
[http://dx.doi.org/10.3390/s130709148] [PMID: 23863857]
[43]
Umpleby, R.J., II; Baxter, S.C.; Chen, Y.; Shah, R.N.; Shimizu, K.D. Characterization of molecularly imprinted polymers with the Langmuir-Freundlich isotherm. Anal. Chem., 2001, 73(19), 4584-4591.
[http://dx.doi.org/10.1021/ac0105686] [PMID: 11605834]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy