[1]
Li, L.Q.; Yu, S.J.; Xiao, W.D.; Li, Y.S.; Li, M.L.; Huang, L.; Zheng, X.Q.; Zhou, S.W.; Yang, H. Prediction of bacterial protein subcellular localization by incorporating various features into Chou’s PseAAC and a backward feature selection approach. Biochimie, 2014, 104(1), 100-107.
[2]
Chou, K.C. Structural bioinformatics and its impact to biomedical science. Curr. Med. Chem., 2004, 11, 2105-2134.
[3]
Lubec, G.; Afjehi-Sadat, L.; Yang, J.W.; John, J.P.P. Searching for hypothetical proteins: theory and practice based upon original data and literature. Prog. Neurobiol., 2005, 77, 90-127.
[4]
Cai, Y.D.; He, J.F.; Li, X.L.; Feng, K.Y.; Lu, L.; Feng, K.R.; Kong, X.Y.; Lu, W.C. Prediction of protein subcellular locations with feature selection and analysis. Protein Pept. Lett., 2011, 17, 464-472.
[5]
Chen, J.; Xu, H.M.; He, P.A.; Dai, Q.; Yao, Y.H. A multiple information fusion method for predicting subcellular locations of two different types of bacterial protein simultaneously. Biosystems, 2016, 139, 37-45.
[6]
Zhang, S.L.; Jin, J. Prediction of protein subcellular localization by using λ-order factor and principal component analysis. Lett. Org. Chem., 2017, 14, 717-724.
[7]
Dehzanqi, A.; Sohrabi, S.; Heffernan, R.; Sharma, A.; Lyons, J.; Paliwal, K.; Sattar, A. Gram-positive and gram-negative protein subcellular localization by incorporating evolutionary-based descriptors into Chou’s general PseAAC. J. Theor. Biol., 2015, 364, 284-294.
[8]
Zhang, S.L.; Liang, Y.Y.; Bai, Z.G. A novel reduced triplet composition based method to predict apoptosis protein subcellular localization. MATCH Commun. Math. Comput. Chem, 2015, 73, 559-571.
[9]
Nakashima, H.; Nishikawa, K. Discrimination of intracellular and extracellular proteins using amino acid composition and residue-pair frequencies. J. Mol. Biol., 1994, 238, 54-61.
[10]
Cedano, J.; Aloy, P. PerezPons, J.A.; Querol, E. Relation between amino acid composition and cellular location of proteins. J. Mol. Biol., 1997, 266, 594-600.
[11]
Zhu, P.P.; Li, W.C.; Zhong, Z.J.; Deng, E.Z.; Ding, H.; Chen, W.; Lin, H. Predicting the subcellular localization of mycobacterial proteins by incorporating the optimal tripeptides into the general form of pseudo amino acid composition. Mol. Biosyst., 2015, 11, 558-563.
[12]
Chou, K.C.; Shen, H.B. Cell-PLoc: a package of web servers for predicting subcellular localization of proteins in various organisms. Nat. Protoc., 2008, 3, 153-162.
[13]
Wan, S.B.; Mak, M.W.; Kung, S.Y. GOASVM: a subcellular location predictor by incorporating term-frequency gene ontology into the general form of Chou’s pseudo-amino acid composition. J. Theor. Biol., 2013, 323, 40-48.
[14]
Chou, K.C.; Shen, H.B. Gpos-mPLoc: a top-down approach to improve the quality of predicting subcellular localization of gram-positive bacterial proteins. Protein Pept. Lett., 2009, 16, 1478-1484.
[15]
Chou, K.C.; Wu, Z.C.; Xiao, X. iLoc-Euk: a multi-label classifier for predicting the subcellular localization of singleplex and multiplex eukaryotic proteins. PLoS One, 2011, 6e18258
[16]
Chou, K.C.; Cai, Y.D. Prediction of protein subcellular locations by GO-FunD-PseAA predictor. Biochem. Biophys. Res. Commun., 2004, 320, 1236-1239.
[17]
Apweiler, R.; Attwood, T.K.; Bairoch, A.; Bateman, A.; Birney, E.; Biswas, M.; Bucher, P.; Cerutti, L.; Corpet, F.; Croning, M.D.; Durbin, R.; Falquet, L.; Fleischmann, W.; Gouzy, J.; Hermjakob, H.; Hulo, N.; Jonassen, I.; Kahn, D.; Kanapin, A.; Karavidopoulou, Y.; Lopez, R.; Marx, B.; Mulder, N.J.; Oinn, T.M.; Pagni, M.; Servant, F.; Sigrist, C.J.; Zdobnov, E.M. The InterPro database, an integrated documentation resource for protein families, domains and functional sites. Nucleic Acids Res., 2001, 29(1), 37-40.
[18]
Chou, K.C.; Cai, Y.D. Using functional domain composition and support vector machines for prediction of protein subcellular location. J. Biol. Chem., 2002, 277, 45765-45769.
[19]
Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic local alignment search tool. J. Mol. Biol., 1990, 215, 403-410.
[20]
Jones, D.T. Protein secondary structure prediction based on position-specific scoring matrices. J. Mol. Biol., 1999, 292, 195-202.
[21]
Xie, D.; Li, A.; Wang, M.; Fan, Z.; Feng, H. LOCSVMPSI: a web server for subcellular localization of eukaryotic proteins using SVM and profile of PSI-BLAST. Nucleic Acids Res., 2005, 33, W105-W110.
[22]
Reinhardt, A.; Hubbard, T. Using neural networks for prediction of the subcellular location of proteins. Nucleic Acids Res., 1998, 26, 2230-2236.
[23]
Rost, B.; Fariselli, P.; Casadio, R. Topology prediction for helical transmembrane proteins at 86% accuracy-topology prediction at 86% accuracy. Protein Sci., 1996, 5, 1704-1718.
[24]
Hirokawa, T.; Boon-Chieng, S.; Mitaku, S. SOSUI: classification and secondary structure prediction system for membrane proteins. Bioinformatics, 1998, 14, 378-379.
[25]
Lio, P.; Vannucci, M. Wavelet change-point prediction of transmembrane proteins. Bioinformatics, 2000, 16, 376-382.
[26]
Niu, B.; Jin, Y.H.; Feng, K.Y.; Lu, W.C.; Cai, Y.D.; Li, G.Z. Using AdaBoost for the prediction of subcellular location of prokaryotic and eukaryotic proteins. Mol. Divers., 2008, 12, 41-45.
[27]
Chou, K.C.; Shen, H.B. Cell-PLoc 2.0: an improved package of web-servers for predicting subcellular localization of proteins in various. Nat. Sci., 2010, 2, 1090-1103.
[28]
Liu, T.G.; Geng, X.B.; Zheng, X.Q.; Li, R.S.; Wang, J. Accurate prediction of protein structural class using auto covariance transformation of PSI-BLAST profiles. Amino Acids, 2012, 42, 2243-2249.
[29]
Stephenson, J.D.; Freeland, S.J. Unearthing the root of amino acid similarity. J. Mol. Evol., 2013, 77(4), 159-169.
[30]
Pearson, K. On lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin Philosoph. Magaz. J. Sci., 1901, 6, 559-572.
[31]
Keeley, R.J.; McDonald, R.J. Principal component analysis: bridging the gap between strain, sex and drug effects. Behav. Brain Res., 2015, 15, 192-198.
[32]
Jian, G.; Zhang, Y.; Qian, P. Prediction of subcellular localization for apoptosis protein: approached with a novel representation and support vector machine. MATCH Commun. Math. Comput. Chem, 2012, 67, 867-878.
[33]
Shi, Z.X.; Dai, Q.; He, P.N.; Yao, Y.H.; Liao, B. Subcellular localization prediction of apoptosis proteins based on the data mining for amino acid index database. Int. Conf. Syst. Biol., 2013, pp. 43-48.
[34]
Mohabatkar, H.; Beigi, M.M.; Abdolahi, K.; Mohsenzadeh, S. Prediction of allergenic proteins and a machine learning approach. Med. Chem., 2013, 9, 133-137.
[35]
Yuan, Z. Better prediction of protein contact number using a support vector regression analysis of amino acid sequence. BMC Bioinformatics, 2005, 6, 248.
[36]
Hua, S.; Sun, Z. Support vector machine approach for protein subcellular localization prediction. Bioinformatics, 2001, 17, 721-728.
[37]
Yuan, Z. Prediction of protein subcellular locations using Markov chain models. FEBS Lett., 1999, 451, 23-26.
[38]
Chou, K.C.; Elrod, D.W. Using discriminant function for prediction of subcellular location of prokaryotic proteins. Biochem. Biophys. Res. Commun., 1998, 252, 63-68.
[39]
Chou, K.C.; Cai, Y.D. A new hybrid approach to predict subcellular localization of proteins by incorporating gene ontology. Biochem. Biophys. Res. Commun., 2003, 311, 743-747.
[40]
Chou, K.C. Prediction of protein subcellular locations by incorporating quasi-sequence-order effect. Biochem. Biophys. Res. Commun., 2000, 278, 477-483.
[41]
Feng, Z.P. Prediction of the subcellular location of prokaryotic proteins based on a new representation of the amino acid composition. Biopolymers, 2001, 58, 491-499.
[42]
Feng, Z.P.; Zhang, C.T. Prediction of the subcellular location of prokaryotic proteins based on the hydrophobicity index of amino acids. Int. J. Biol. Macromol., 2001, 28, 255-261.
[43]
Chou, K.C. Prediction of tight turns and their types in proteins. Anal. Biochem., 2000, 286, 1-16.