[1]
Wells RD, Blakesley RW, Hardies SC, et al. The role of DNA structure in genetic regulation. CRC Crit Rev Biochem 1977; 4(3): 305-40.
[2]
Wells RD, Wartell RM. The influence of nucleotide sequence on DNA properties. Biochemistry of Nucleic Acids 1974; 6(3): 41-64.
[3]
Felsenfeld G, Rich A. Studies on the formation of two- and three-stranded polyribonucleotides. Biochim Biophys Acta 1957; 26(3): 457-68.
[4]
Wang AH, Quigley GJ, Kolpak FJ, et al. Molecular structure of a left-handed double helical DNA fragment at atomic resolution. Nature 1979; 282(5740): 680-6.
[5]
Panayotatos N, Wells RD. Cruciform structures in supercoiled DNA. Nature 1981; 289(5797): 466-70.
[6]
Lyamichev VI, Panyutin IG, Frank-Kamenetskii MD. Evidence of cruciform structures in superhelical DNA provided by two-dimensional gel electrophoresis. FEBS Lett 1983; 153(2): 298-302.
[7]
Sen D, Gilbert W. Formation of parallel four-stranded complexes by guanine-rich motifs in DNA and its implications for meiosis. Nature 1988; 334(6180): 364-6.
[8]
Ghosh A, Bansal M. A glossary of DNA structures from A to Z. Acta Crystallogr D Biol Crystallogr 2003; 59(Pt 4): 620-6.
[9]
Zhao J, Bacolla A, Wang G, Vasquez KM. Non-B DNA structure-induced genetic instability and evolution. Cell Mol Life Sci 2010; 67(1): 43-62.
[10]
Hatfield GW, Benham CJ. DNA topology-mediated control of global gene expression in Escherichia coli. Annu Rev Genet 2002; 36: 175-203.
[11]
Rich A, Zhang S. Timeline: Z-DNA: the long road to biological function. Nat Rev Genet 2003; 4(7): 566-72.
[12]
Bacolla A, Wells RD. Non-B DNA conformations, genomic rearrangements, and human disease. J Biol Chem 2004; 279(46): 47411-4.
[13]
Ha SC, Kim D, Hwang HY, Rich A, Kim YG, Kim KK. The crystal structure of the second Z-DNA binding domain of human DAI (ZBP1) in complex with Z-DNA reveals an unusual binding mode to Z-DNA. Proc Natl Acad Sci USA 2008; 105(52): 20671-6.
[14]
Neidle S, Parkinson GN. The structure of telomeric DNA. Curr Opin Struct Biol 2003; 13(3): 275-83.
[15]
Bacolla A, Jaworski A, Larson JE, et al. Breakpoints of gross deletions coincide with non-B DNA conformations. Proc Natl Acad Sci USA 2004; 101(39): 14162-7.
[16]
Wang G, Vasquez KM. Non-B DNA structure-induced genetic instability. Mutat Res 2006; 598(1-2): 103-19.
[17]
Wang G, Vasquez KM. Naturally occurring H-DNA-forming sequences are mutagenic in mammalian cells. Proc Natl Acad Sci USA 2004; 101(37): 13448-53.
[18]
Kornreich R, Bishop DF, Desnick RJ. Alpha-galactosidase A gene rearrangements causing Fabry disease. Identification of short direct repeats at breakpoints in an Alu-rich gene. J Biol Chem 1990; 265(16): 9319-26.
[19]
Bonaglia MC, Giorda R, Massagli A, Galluzzi R, Ciccone R, Zuffardi O. A familial inverted duplication/deletion of 2p25.1-25.3 provides new clues on the genesis of inverted duplications. Eur J Hum Genet 2009; 17(2): 179-86.
[20]
Rooms L, Reyniers E, Kooy RF. Diverse chromosome breakage mechanisms underlie subtelomeric rearrangements, a common cause of mental retardation. Hum Mutat 2007; 28(2): 177-82.
[21]
Quental R, Azevedo L, Rubio V, Diogo L, Amorim A. Molecular mechanisms underlying large genomic deletions in ornithine transcarbamylase (OTC) gene. Clin Genet 2009; 75(5): 457-64.
[22]
Béna F, Gimelli S, Migliavacca E, et al. A recurrent 14q32.2 microdeletion mediated by expanded TGG repeats. Hum Mol Genet 2010; 19(10): 1967-73.
[23]
Repping S, Skaletsky H, Lange J, et al. Recombination between palindromes P5 and P1 on the human Y chromosome causes massive deletions and spermatogenic failure. Am J Hum Genet 2002; 71(4): 906-22.
[24]
Shortt J, Johnstone RW. Oncogenes in cell survival and cell death. Cold Spring Harb Perspect Biol 2012; 4(12)a009829
[25]
Mertens F, Johansson B, Fioretos T, Mitelman F. The emerging complexity of gene fusions in cancer. Nat Rev Cancer 2015; 15(6): 371-81.
[26]
Aparicio T, Baer R, Gautier J. DNA double-strand break repair pathway choice and cancer. DNA Repair (Amst) 2014; 19: 169-75.
[27]
Tsai AG, Lu H, Raghavan SC, Muschen M, Hsieh CL, Lieber MR. Human chromosomal translocations at CpG sites and a theoretical basis for their lineage and stage specificity. Cell 2008; 135(6): 1130-42.
[28]
Xiang H, Wang J, Hisaoka M, Zhu X. Characteristic sequence motifs located at the genomic breakpoints of the translocation t(12;16) and t(12;22) in myxoid liposarcoma. Pathology 2008; 40(6): 547-52.
[29]
Banerji S, Cibulskis K, Rangel-Escareno C, et al. Sequence analysis of mutations and translocations across breast cancer subtypes. Nature 2012; 486(7403): 405-9.
[30]
Lawson AR, Hindley GF, Forshew T, et al. RAF gene fusion breakpoints in pediatric brain tumors are characterized by significant enrichment of sequence microhomology. Genome Res 2011; 21(4): 505-14.
[31]
Dalla-Favera R, Bregni M, Erikson J, Patterson D, Gallo RC, Croce CM. Human c-myc onc gene is located on the region of chromosome 8 that is translocated in Burkitt lymphoma cells. Proc Natl Acad Sci USA 1982; 79(24): 7824-7.
[32]
Neidle S, Parkinson GN. Quadruplex DNA crystal structures and drug design. Biochimie 2008; 90(8): 1184-96.
[33]
Wang AJ, Quigley GJ, Kolpak FJ, van der Marel G, van Boom JH, Rich A. Left-handed double helical DNA: variations in the backbone conformation. Science 1981; 211(4478): 171-6.
[34]
Chandrasekhar S, Naik TR, Nayak SK, Row TN. Crystal structure of an intermolecular 2:1 complex between adenine and thymine. Evidence for both Hoogsteen and ‘quasi-Watson-Crick’ interactions. Bioorg Med Chem Lett 2010; 20(12): 3530-3.
[35]
Patel DJ, Phan AT, Kuryavyi V. Human telomere, oncogenic promoter and 5′-UTR G-quadruplexes: Diverse higher order DNA and RNA targets for cancer therapeutics. Nucleic Acids Res 2007; 35(22): 7429-55.
[36]
Kypr J, Kejnovská I, Renciuk D, Vorlícková M. Circular dichroism and conformational polymorphism of DNA. Nucleic Acids Res 2009; 37(6): 1713-25.
[37]
Mullen MA, Olson KJ, Dallaire P, Major F, Assmann SM, Bevilacqua PC. RNA G-Quadruplexes in the model plant species Arabidopsis thaliana: Prevalence and possible functional roles. Nucleic Acids Res 2010; 38(22): 8149-63.
[38]
Du Z, Zhao Y, Li N. Genome-wide colonization of gene regulatory elements by G4 DNA motifs. Nucleic Acids Res 2009; 37(20): 6784-98.
[39]
Verma A, Halder K, Halder R, et al. Genome-wide computational and expression analyses reveal G-quadruplex DNA motifs as conserved cis-regulatory elements in human and related species. J Med Chem 2008; 51(18): 5641-9.
[40]
Hershman SG, Chen Q, Lee JY, et al. Genomic distribution and functional analyses of potential G-quadruplex-forming sequences in Saccharomyces cerevisiae. Nucleic Acids Res 2008; 36(1): 144-56.
[41]
Strawbridge EM, Benson G, Gelfand Y, Benham CJ. The distribution of inverted repeat sequences in the Saccharomyces cerevisiae genome. Curr Genet 2010; 56(4): 321-40.
[42]
Schroth GP, Chou PJ, Ho PS. Mapping Z-DNA in the human genome. Computer-aided mapping reveals a nonrandom distribution of potential Z-DNA-forming sequences in human genes. J Biol Chem 1992; 267(17): 11846-55.
[43]
Angluin D. Finding patterns common to a set of strings. J Comput Syst Sci 1980; 14(1): 46-62.
[44]
Garofalakis M, Rastogi R, Shim K. SPIRIT: Sequential Pattern Mining with Regular Expression Constraints. 2000; 99.
[45]
Hughey R, Krogh A. Hidden Markov models for sequence analysis: extension and analysis of the basic method. Comput Appl Biosci 1996; 12(2): 95-107.
[46]
Kostadinov R, Malhotra N, Viotti M, Shine R, D’Antonio L, Bagga P. GRSDB: a database of quadruplex forming G-rich sequences in alternatively processed mammalian pre-mRNA sequences. Nucleic Acids Res 2006; 34(Database issue): D119-24.
[47]
Dhapola P, Chowdhury S. QuadBase2: web server for multiplexed guanine quadruplex mining and visualization. Nucleic Acids Res 2016; 44(W1)W277-83
[48]
Schroth GP, Ho PS. Occurrence of potential cruciform and H-DNA forming sequences in genomic DNA. Nucleic Acids Res 1995; 23(11): 1977-83.
[49]
Murchie AI, Lilley DM. Supercoiled DNA and cruciform structures. Methods Enzymol 1992; 211: 158-80.
[50]
Zheng GX, Kochel T, Hoepfner RW, Timmons SE, Sinden RR. Torsionally tuned cruciform and Z-DNA probes for measuring unrestrained supercoiling at specific sites in DNA of living cells. J Mol Biol 1991; 221(1): 107-22.
[52]
Landau GM, Vishkin U, Nussinov R. An efficient string matching algorithm with k differences for nucleotide and amino acid sequences. Nucleic Acids Res 1986; 14(1): 31-46.
[53]
Markham NR, Zuker M. UNAFold: software for nucleic acid folding and hybridization. Methods Mol Biol 2008; 453: 3-31.
[54]
Singleton CK, Wells RD. Relationship between superhelical density and cruciform formation in plasmid pVH51. J Biol Chem 1982; 257(11): 6292-5.
[55]
Biertümpfel C, Yang W, Suck D. Crystal structure of T4 endonuclease VII resolving a Holliday junction. Nature 2007; 449(7162): 616-20.
[56]
McNicholas S, Potterton E, Wilson KS, Noble ME. Presenting your structures: The CCP4mg molecular-graphics software. Acta Crystallogr D Biol Crystallogr 2011; 67(Pt 4): 386-94.
[57]
van Dongen MJ, Doreleijers JF, van der Marel GA, van Boom JH, Hilbers CW, Wijmenga SS. Structure and mechanism of formation of the H-y5 isomer of an intramolecular DNA triple helix. Nat Struct Biol 1999; 6(9): 854-9.
[58]
Gal M, Katz T, Ovadia A, Yagil G. TRACTS: A program to map oligopurine.oligopyrimidine and other binary DNA tracts. Nucleic Acids Res 2003; 31(13): 3682-5.
[59]
Gaddis SS, Wu Q, Thames HD, et al. A web-based search engine for triplex-forming oligonucleotide target sequences. Oligonucleotides 2006; 16(2): 196-201.
[60]
Mergny JL, Sun JS, Rougée M, et al. Sequence specificity in triple-helix formation: Experimental and theoretical studies of the effect of mismatches on triplex stability. Biochemistry 1991; 30(40): 9791-8.
[61]
Roberts RW, Crothers DM. Specificity and stringency in DNA triplex formation. Proc Natl Acad Sci USA 1991; 88(21): 9397-401.
[62]
Xodo LE, Alunni-Fabbroni M, Manzini G, Quadrifoglio F. Sequence-specific DNA-triplex formation at imperfect homopurine-homopyrimidine sequences within a DNA plasmid. Eur J Biochem 1993; 212(2): 395-401.
[63]
Jenjaroenpun P, Kuznetsov VA. TTS mapping: Integrative WEB tool for analysis of triplex formation target DNA sequences, G-quadruplets and non-protein coding regulatory DNA elements in the human genome. BMC Genomics 2009; 10(Suppl. 3): S9.
[64]
Zweig AS, Karolchik D, Kuhn RM, Haussler D, Kent WJ. UCSC genome browser tutorial. Genomics 2008; 92(2): 75-84.
[65]
Lexa M, Martínek T, Burgetová I, Kopeček D, Brázdová M. A dynamic programming algorithm for identification of triplex-forming sequences. Bioinformatics 2011; 27(18): 2510-7.
[66]
Wang Y, Patel DJ. Solution structure of the human telomeric repeat d[AG3(T2AG3)3] G-tetraplex. Structure 1993; 1(4): 263-82.
[67]
Todd AK, Johnston M, Neidle S. Highly prevalent putative quadruplex sequence motifs in human DNA. Nucleic Acids Res 2005; 33(9): 2901-7.
[68]
Huppert JL, Balasubramanian S. Prevalence of quadruplexes in the human genome. Nucleic Acids Res 2005; 33(9): 2908-16.
[69]
Rawal P, Kummarasetti VB, Ravindran J, et al. Genome-wide prediction of G4 DNA as regulatory motifs: Role in Escherichia coli global regulation. Genome Res 2006; 16(5): 644-55.
[70]
Huppert JL, Balasubramanian S. G-quadruplexes in promoters throughout the human genome. Nucleic Acids Res 2007; 35(2): 406-13.
[71]
Cao K, Ryvkin P, Johnson FB. Computational detection and analysis of sequences with duplex-derived interstrand G-quadruplex forming potential. Methods 2012; 57(1): 3-10.
[72]
Eddy J, Maizels N. Gene function correlates with potential for G4 DNA formation in the human genome. Nucleic Acids Res 2006; 34(14): 3887-96.
[73]
Kikin O, D'Antonio L, Bagga PS. QGRS Mapper: A web-based server for predicting G-quadruplexes in nucleotide sequences. Nucleic Acids Res 2006; 34(Web Server issue): W676-682.
[74]
Beaudoin JD, Perreault JP. 5′-UTR G-quadruplex structures acting as translational repressors. Nucleic Acids Res 2010; 38(20): 7022-36.
[75]
Lorenz R, Hofacker IL, Bernhart SH. Folding RNA/DNA hybrid duplexes. Bioinformatics 2012; 28(19): 2530-1.
[76]
Yano M, Kato Y. Using hidden Markov models to investigate G-quadruplex motifs in genomic sequences. BMC Genomics 2014; 15(Suppl. 9): S15.
[77]
Stegle O, Payet L, Mergny JL, MacKay DJ, Leon JH. Predicting and understanding the stability of G-quadruplexes. Bioinformatics 2009; 25(12): i374-82.
[78]
Mukundan VT, Phan AT. Bulges in G-quadruplexes: Broadening the definition of G-quadruplex-forming sequences. J Am Chem Soc 2013; 135(13): 5017-28.
[79]
Varizhuk A, Ischenko D, Tsvetkov V, et al. The expanding repertoire of G4 DNA structures. Biochimie 2017; 135: 54-62.
[80]
Bedrat A, Lacroix L, Mergny JL. Re-evaluation of G-quadruplex propensity with G4Hunter. Nucleic Acids Res 2016; 44(4): 1746-59.
[81]
Varizhuk A, Ischenko D, Smirnov I, et al. Galiana: An improved search algorithm to find G-quadruplexes in genome sequences. bioRxiv 2014; 135.
[82]
Hon J, Martínek T, Zendulka J, Lexa M. pqsfinder: An exhaustive and imperfection-tolerant search tool for potential quadruplex-forming sequences in R. Bioinformatics 2017; 33(21): 3373-9.
[83]
Ha SC, Lowenhaupt K, Rich A, Kim YG, Kim KK. Crystal structure of a junction between B-DNA and Z-DNA reveals two extruded bases. Nature 2005; 437(7062): 1183-6.
[84]
Rahmouni AR, Wells RD. Stabilization of Z DNA in vivo by localized supercoiling. Science 1989; 246(4928): 358-63.
[85]
Kim D, Lee YH, Hwang HY, Kim KK, Park HJ. Z-DNA binding proteins as targets for structure-based virtual screening. Curr Drug Targets 2010; 11(3): 335-44.
[86]
Schwartz T, Rould MA, Lowenhaupt K, Herbert A, Rich A. Crystal structure of the Zalpha domain of the human editing enzyme ADAR1 bound to left-handed Z-DNA. Science 1999; 284(5421): 1841-5.
[87]
Ha SC, Lokanath NK, Van Quyen D, et al. A poxvirus protein forms a complex with left-handed Z-DNA: Crystal structure of a Yatapoxvirus Zalpha bound to DNA. Proc Natl Acad Sci USA 2004; 101(40): 14367-72.
[88]
Pham HT, Park MY, Kim KK, Kim YG, Ahn JH. Intracellular localization of human ZBP1: Differential regulation by the Z-DNA binding domain, Zalpha, in splice variants. Biochem Biophys Res Commun 2006; 348(1): 145-52.
[89]
Kim D, Hur J, Park K, et al. Distinct Z-DNA binding mode of a PKR-like protein kinase containing a Z-DNA binding domain (PKZ). Nucleic Acids Res 2014; 42(9): 5937-48.
[90]
Ho PS, Ellison MJ, Quigley GJ, Rich A. A computer aided thermodynamic approach for predicting the formation of Z-DNA in naturally occurring sequences. EMBO J 1986; 5(10): 2737-44.
[91]
Peck LJ, Wang JC. Energetics of B-to-Z transition in DNA. Proc Natl Acad Sci USA 1983; 80(20): 6206-10.
[92]
Ellison MJ, Kelleher RJ III, Wang AH, Habener JF, Rich A. Sequence-dependent energetics of the B-Z transition in supercoiled DNA containing nonalternating purine-pyrimidine sequences. Proc Natl Acad Sci USA 1985; 82(24): 8320-4.
[93]
Ellison MJ, Feigon J, Kelleher RJ III, Wang AH, Habener JF, Rich A. An assessment of the Z-DNA forming potential of alternating dA-dT stretches in supercoiled plasmids. Biochemistry 1986; 25(12): 3648-55.