[1]
Mulvihill, D.M.; Ennis, M.P. Functional milk proteins: Production and utilization. In: Fox P.F., McSweeney P.L.H. (eds) Advanced Dairy Chemistry—1 Proteins; Springer, Boston, MA.,. , 2003; pp. 1175-1228.
[2]
Le, T.T.; Deeth, H.C.; Larsen, L.B. Proteomics of major bovine milk proteins: Novel insights. Int. Dairy J., 2017, 67, 2-15.
[3]
Fox, P.F.; Uniacke-Lowe, T.; McSweeney, P.L.H.; O’Mahony, J.A. Milk proteins. In Dairy chemistry and biochemistry (2nd ed.). , 2015; pp. 145-205.
[4]
Horne, D.S. A balanced view of casein interactions. Curr. Opin. Colloid In., 2017, 28, 74-86.
[5]
Shahbazi, R.; Davoodi, H.; Mortazavian, A.M.; Esmaeili, S. The biologic effects of casein and casein-derived bioactive peptides. Iran. J. Nutr. Sci. Food Technol., 2013, 7, 811-820.
[6]
Swaisgood, H.E. Chemistry of the caseins. In: Fox, P.F.; Editor.Advanced dairy chemistry. 1: Proteins, 2nd ed; . London: Elsevier
Applied Science;. , 1992; pp. 63-110.
[7]
Keppler, J.K.; Martin, D.; Garamus, V.M.; Berton-Carabin, C.; Nipoti, E.; Coenye, T.; Schwarz, K. Functionality of whey proteins covalently modified by allyl isothiocyanate. Part 1 phusicochemical and antibacterial properties of native and modified whey proteins at pH 2 to 7. Food Hydrocoll., 2017, 65, 130-143.
[8]
Lin, S.H.; Leong, S.L.; Dewan, P.K.; Bloomfield, V.A.; Morr, C.V. Effect if calcium ion on the structure of native bovine casein micelles. Biochemistry, 1972, 11, 1818-1821.
[9]
Yano, M.; Nagasawa, S.; Suzuki, T. Purification and properties of bovine serum kallikrein activated with casein. J. Biochem., 1970, 67, 713-725.
[10]
Lee, Y.M.; Skurk, T.; Hennig, M.; Hauner, H. Effect of a milk drink supplemented with whey peptides on blood pressure in patients with mild hypertension. Eur. J. Nutr., 2007, 46, 21.
[11]
Mora-Gutierrez, A.; Farrell, H.M.; Attaie, R.; Mcwhinney, V.J.; Wang, C. Influence of bovine and caprine casein phosphopeptides differing in alphas1-casein content in determining the absorption of calcium from bovine and caprine calcium-fortified milks in rats. J. Dairy Res., 2007, 74, 356-366.
[12]
Bouhallab, S.; Bouglé, D. Biopeptides of milk: Caseinophosphopeptides and mineral bioavailability. Reprod. Nutr. Dev., 2004, 44, 493-498.
[13]
Miquel, E.; Alegría, A.; Barberá, R.; Barbera, R.; Farre, R. Casein phosphopeptides released by simulated gastrointestinal digestion of infant formulas and their potential role in mineral binding. Int. Dairy J., 2006, 16, 992-1000.
[14]
Miquel, E.; Farré, R. Effects and future trends of casein phosphopeptides on zinc bioavailability. Trends Food Sci. Technol., 2007, 18, 139-143.
[15]
Cosentino, S.; Donida, B.M.; Marasco, E.; Marasco, E.; Favero, E.D.; Cantù, L.; Lombardi, G.; Colombini, A.; Iametti, S.; Valaperta, S.; Fiorilli, A.; Tettamanti, G.; Ferraretto, A. Calcium ions enclosed in casein phosphopeptide aggregates are directly involved in the mineral uptake by differentiated HT-29 cells. Int. Dairy J., 2010, 20, 770-776.
[16]
Kitts, D.D.; Nakamura, S. Calcium-enriched casein phosphopeptide stimulates release of IL-6 cytokine in human epithelial intestinal cell line. J. Dairy Res., 2006, 73, 44-48.
[17]
Reyes-Díaz, A.; González-Córdova, A.F.; Hernández-Mendoza, A. Immunomodulation by hydrolysates and peptides derived from milk proteins. Int. J. Dairy Technol., 2018, 71, 1-9.
[18]
Lin, C.Y.; Mcallister, A.J.; Ngkwaihang, K.F.; Hayes, J.F.; Batra, T.R.; Lee, A.J.; Roy, G.L.; Vesely, J.A.; Wauthy, J.M.; Winter, K.A. Association of milk protein types with growth and reproductive performance of dairy heifers. J. Dairy Sci., 1987, 70, 29-39.
[19]
Fernández-Tomé, S.; Martínez-Maqueda, D.; Girón, R.; Girón, R.; Goicoechea, C.; Miralles, B.; Recio, I. Novel peptides derived from αs1-casein with opioid activity and mucin stimulatory effect on HT29-MTX cells. J. Funct. Foods, 2016, 25, 466-476.
[20]
Hebb, A.L.O.; Poulin, J.F.; Roach, S.P.; Zacharko, R.M.; Drolet, G. Cholecystokinin and endogenous opioid peptides: interactive influence on pain, cognition, and emotion. Prog. Neuro-Psychoph., 2005, 29, 1225-1238.
[21]
Witt, K.A.; Davis, T.P. CNS drug delivery: Opioid peptides and the blood-brain barrier. AAPS J., 2006, 8, E76-E88.
[22]
Arima, S.; Niki, R.; Takase, K. Structure of β-casein. J. Dairy Res., 1979, 46, 281-282.
[23]
Righetti, P.G.; Nembri, F.; Bossi, A.; Mortarino, M. Continuous enzymatic hydrolysis of β-casein and isoelectric collection of some of the biologically active peptides in an electric field. Biotechnol. Prog., 2010, 13, 258-264.
[24]
Koudelka, T.; Dehle, F.C.; Musgrave, I.F.; Hoffmann, P.; Carver, J.A. Methionine oxidation enhances k-casein amyloid fibril formation. J. Agric. Food Chem., 2012, 60, 4144-4155.
[25]
Liu, J.; Dehle, F.C.; Liu, Y.; Bahraminejad, E.; Ecroyd, H.; Thorn, D.C.; Carver, J.A. The effect of milk constituents and crowding agents on amyloid fibril formation by κ-casein. J. Agric. Food Chem., 2016, 64, 1335-1343.
[26]
Fiat, A.M.; Miglilore-Samour, D.; Jolles, P.; Crouet, L.; Collier, C.; Caen, J. Biologically active peptides from milk proteins with emphasis on two example concerning antithrombotic and immuno-modulating activities. J. Dairy Sci., 1993, 76, 301-310.
[27]
Manso, M.A.; Escudero, C.; Alijo, M.; López-Fandino, R. Platelet aggregation inhibitory activity of bovine, ovine, and caprine kappa-casein macropeptides and their tryptic hydrolysates. J. Food Prot., 2002, 65, 1992-1996.
[28]
Rojas-Ronquillo, R.; Cruz-Guerrero, A.; Flores-Nájera, A.; Rodríguez-Serrano, G.; Gómez-Ruiz, L.; Reyes-Grajeda, J.P.; Jiménez-Guzmán, J.; García-Garibay, M. Antithrombotic and angiotensin-converting enzyme inhibitory properties of peptides released from bovine casein by Lactobacillus casei Shirota. Int. Dairy J., 2012, 26, 147-154.
[29]
Mikkelsen, T.L.; Rasmussen, E.; Olsen, A.; Barkholt, V.; Frøkiær, H. Immunogenicity of κ-casein and glycomacropeptide. J. Dairy Sci., 2006, 89, 824-830.
[30]
Otani, H.; Monnai, M. Inhibition of proliferative responses of mouse spleen lymphocytes by bovine milk κ-casein digests. Food Arg. Immunol., 1993, 5, 219-229.
[31]
Ortega-González, M.; Capitán-Canadas, F.; Requena, P.; Ocón, B.; Romero-Calvo, I.; Aranda, C.; Suárez, M.D.; Zarzuelo, A.; Sánchez de Medina, F.; Martinez-Augustin, O. Validation of bovine glycomacropeptide as an intestinal anti-inflammatory nutraceutical in the lymphocyte-transfer model of colitis. Br. J. Nutr., 2014, 111, 1202-1212.
[32]
Cheng, X.; Gao, D.; Chen, B.; Mao, X. Endotoxin-binding peptides derived from casein glycomacropeptide inhibit lipopolysaccharide-stimulated inflammatory responses via blockade of NF-κB activation in macrophages. Nutrients, 2015, 7, 3119-3137.
[33]
Inagaki, M.; Muranishi, H.; Yamada, K.; Kakehi, K.; Uchida, K.; Suzuki, T.; Yabe, T.; Nakagomi, T.; Nakagomi, O.; Kanamaru, Y. Bovine κ-casein inhibits human rotavirus (HRV) infection via direct binding of glycans to HRV. J. Dairy Sci., 2014, 97, 2653-2661.
[34]
Kawasaki, Y.; Isoda, H.; Tanimoto, M.; Dosako, S.; Idota, T.; Ahiko, K. Inhibition by lactoferrin and κ-casein glycomacropeptide of binding of cholera toxin to its receptor. Biosci. Biotechnol. Biochem., 1992, 56, 195-198.
[35]
Groves, M.L.; Kiddy, C.A. Polymorphism of γ-casein in cow’s milk. Arch. Biochem. Biophys., 1968, 126, 188-193.
[36]
Pihlanto, A.; Korhonen, H. In:TayloI, S.L.; Ed.; Bioactivepeptides and proteins. Adv. Food Nutr. Res., 2003, 47, 175-276.
[37]
Montiel, V.R.; Campuzano, S.; Torrente-Rodríguez, R.M.; Reviejo, A.J.; Pingarrón, J.M. Electrochemical magnetic beads-based immunosensing platform for the determination of a-lactalbumin in milk. Food Chem., 2016, 213, 595-601.
[38]
Kamau, S.M.; Cheison, S.C.; Chen, W.; Liu, X.M.; Lu, R.R. Alpha-lactalbumin: Its production technologies and bioactive peptides. Compr. Rev. Food Sci. F., 2010, 9, 197-212.
[39]
Indyk, H.E. Development and application of an optical biosensor immunoassay for α-lactalbumin in bovine milk. Int. Dairy J., 2009, 19, 36-42.
[40]
Crowley, S.V.; Dowling, A.P.; Caldeo, V.; Kelly, A.L.; O’Mahony, J.A. Impact of α-lactalbumin:β-lactoglobulin ratio on the heat stability of model infant milk formula protein systems. Food Chem., 2016, 194, 184-190.
[41]
Ruprichová, L.; Králová, M.; Borkovcová, I.; Vorlová, L.; Bedáňová, I. Determination of whey proteins in different types of milk. Acta Vet. Brno, 2014, 83, 67-72.
[42]
Noyelle, K.; Van Dael, H.J. Kinetics of conformational changes induced by the binding of various metal ions to bovine α-lactalbumin. J. Inorg. Biochem., 2002, 88, 69-76.
[43]
Fan, P.; Li, L.; Rezaei, A.; Eslamfam, S.; Che, D.; Ma, X. Metabolites of dietary protein and peptides by intestinal microbes and their impacts on gut. Curr. Protein Pept. Sci., 2015, 16, 646-654.
[44]
Fan, P.; Song, P.; Li, L.; Huang, C.; Chen, J.; Yang, W.; Qiao, S.; Wu, G.; Zhang, G.; Ma, X. Roles of biogenic amines in intestinal signaling. Curr. Protein Pept. Sci., 2017, 18, 532-540.
[45]
Indyk, H.E.; Hart, S.; Meerkerk, T.; Gill, B.D.; Woollard, D.C. The β-lactoglobulin content of bovine milk: Development and application of a biosensor immunoassay. Int. Dairy J., 2017, 73, 68-73.
[46]
Jameson, G.B.; Adams, J.J.; Creamer, L.K. Flexibility, functionality and hydrophobicity of bovine β-lactoglobulin. Int. Dairy J., 2002, 12(4), 319-329.
[47]
Levine, M.M. Vaccines and milk immunoglobulin concentrates for prevention of infectious diarrhea. J. Pediatr. Orthop., 1991, 118, 129-136.
[48]
Hao, L.Y.; Shan, Q.; Wei, J.Y.; Ma, F.T.; Sun, P. Lactoferrin: Major physiological functions and applications. Curr. Protein Pept. Sci., 2019, 20(2), 139-144.
[49]
Crichton, R.R. Proteins of iron storage and transport. Adv. Protein Chem., 1990, 40, 281-363.
[50]
Baker, E.N.; Baker, H.M. Molecular structure, binding properties and dynamics of lactoferrin. Cell. Mol. Life Sci., 2005, 62, 2531-2539.
[51]
Gifford, J.L.; Ishida, H.; Vogel, H.J. Structural characterization of the interaction of human lactoferrin with calmodulin. PLoS One, 2012, 7e51026
[52]
Wakabayashi, H.; Yamauchi, K.; Takase, M. Lactoferrin research, technology and applications. Int. Dairy J., 2006, 16, 1241-1251.
[53]
Neville, M.C. Lactoferrin secretion into milk: Comparison between bovine, murine and human milk. J. Anim. Sci., 2000, 78, 26-35.
[54]
Pierce, A.; Legrand, D.; Mazurier, J. Lactoferrin: A multifunctional protein. Med. Sci., 2009, 25, 361.
[55]
Giansanti, F.; Panella, G.; Leboffe, L.; Antonini, G. Lactoferrin from milk: Nutraceutical and pharmacological properties. Pharmaceuticals, 2016, 9, 61-76.
[56]
Kawakami, H.; Hiratsuka, M.; Dosako, S. Effects of iron-saturated lactoferrin on iron absorption. Agric. Biol. Chem., 1988, 52, 903-908.
[57]
Davidsson, L.; Kastenmayer, P.; Yuen, M.; Lönnerdal, B.; Hurrell, R.F. Influence of lactoferrin on iron absorption from human milk in infants. Pediatr. Res., 1994, 35, 117-124.
[58]
Conneely, O.M. Antiinflammatory activities of lactoferrin. J. Am. Coll. Nutr., 2001, 20, 389S-395S.
[59]
Taha, S.H.; Mehrez, M.A.; Sitohy, M.Z.; Dawood, A.G.I.A.; Hamid, A.E.; Kilany, W.H. Effectiveness of esterified whey proteins fractions against Egyptian Lethal Avian Influenza A (H5N1). Virol. J., 2010, 7, 330.
[60]
Tsuda, H.; Kozu, T.; Iinuma, G.; Ohashi, Y.; Saito, D.; Akasu, T.; Alexander, D.B.; Futakuchi, M.; Fukamachi, K.; Xu, J.; Kakizoe, T.; Iigo, M. Cancer prevention by bovine lactoferrin: From animal studies to human trial. Biometals, 2010, 23, 399-409.
[61]
Sanchez, L.; Calvo, M.; Brock, J.H. Biological role of lactoferrin. Arch. Dis. Child., 1992, 67, 657-661.
[62]
Valenti, P.; Antonini, G. Lactoferrin: An important host defence against microbial and viral attack. Cell. Mol. Life Sci., 2005, 62, 2576-2587.
[63]
Yen, C.C.; Shen, C.J.; Hsu, W.H.; Chang, Y.H.; Lin, H.T.; Chen, H.L.; Chen, C.M. Lactoferrin: An iron-binding antimicrobial protein against Escherichia coli infection. Biometals, 2011, 24, 585-594.
[64]
Rahman, M.M.; Kim, W.S.; Ito, T.; Kumura, H.; Shimazaki, K.I. Growth promotion and cell binding ability of bovine lactoferrin to Bifidobacterium longum. Anaerobe, 2009, 15, 133-137.
[65]
Redwan, E.M.; Uversky, V.N.; El-Fakharany, E.M.; Al-Mehdar, H. Potential lactoferrin activity against pathogenic viruses. C. R. Biol., 2014, 337, 581-595.
[66]
Park, Y.G.; Jeong, J.K.; Lee, J.H.; Lee, Y.J.; Seol, J.W.; Kim, S.J.; Hur, T.Y.; Jung, Y.H.; Kang, S.J.; Park, S.Y. Lactoferrin protects against prion protein-induced cell death in neuronal cells by preventing mitochondrial dysfunction. Int. J. Mol. Med., 2013, 31, 325-330.
[67]
Ogasawara, Y.; Imase, M.; Oda, H.; Wakabayashi, H.; Ishii, K. Lactoferrin directly scavenges hydroxyl radicals and undergoes oxidative self-degradation: A possible role in protection against oxidative DNA damage. Int. J. Mol. Sci., 2014, 15, 1003-1013.
[68]
Iigo, M.; Alexander, D.B.; Long, N.; Xu, J.; Fukamachi, K.; Futakuchi, M.; Takase, M.; Tsuda, H. Anticarcinogenesis pathways activated by bovine lactoferrin in the murine small intestine. Biochimie, 2009, 91, 86-101.
[69]
Xu, X.X.; Jiang, H.R.; Li, H.B.; Zhang, T.N.; Zhou, Q.; Liu, N. Apoptosis of stomach cancer cell SGC-7901 and regulation of Akt signaling way induced by bovine lactoferrin. J. Dairy Sci., 2010, 93, 2344-2350.
[70]
Duarte, D.C.; Nicolau, A.; Teixeira, J.A.; Rodrigues, L.R. The effect of bovine milk lactoferrin on human breast cancer cell lines. J. Dairy Sci., 2011, 94, 66-76.
[71]
Tsuda, H.; Sekine, K.; Fujita, K.; Ligo, M. Cancer prevention by bovine lactoferrin and underlying mechanisms - A review of experimental and clinical studies. Biochem. Cell Biol., 2002, 80, 131-136.
[72]
Kilara, A.; Panyam, D. Peptides from milk proteins and their properties. Crit. Rev. Food Sci. Nutr., 2003, 43, 607-633.
[73]
Neeser, J.R. Dental anti—plaque and anticaries agent. United States
Patent 4992420 1991.
[74]
Beucher, S.; Levenez, F.; Yvon, M. Effect of caseino-maempeptide (CMP) on cholecystokinin(CCK) release in rat. Reprod. Nutr. Dev., 1994, 34, 613-614.
[75]
Liepke, C.; Zucht, H.D.; Forssmann, W.G.; Forssmann, W.G.; Ständker, L. Purification of novel peptide antibiotics from human milk. J. Chromatogr. B Biomed. Sci. Appl., 2001, 752, 369.
[76]
Playford, R.J.; Macdonald, C.E.; Johnson, W.S. Colostrum and milk-derived peptide growth factors for the treatment of gastrointestinal disorders. Am. J. Clin. Nutr., 2000, 72, 5.
[77]
Malkoski, M.; Dashper, S.G.; O’Briensimpson, N.M.; Talbo, G.H.; Macris, M.; Cross, K.J.; Reynolds, E.C. Kappacin, a novel antibacterial peptide from bovine milk. Antimicrob. Agents Chemother., 2001, 45, 2309-2315.
[78]
Dajanta, K.; Chukeatirote, E.; Apichartsrangkoon, A. Effect of lactoperoxidase system on keeping quality of raw cow’s milk in thailand. Int. J. Dairy Sci., 2008, 3, 112-116.
[79]
[74] Al-Baarri, A.N. Application of lactoperoxidase system using bovine whey and the effect of storage condition on lactoperoxidase activity. Int. J. Dairy Sci., 2011, 6, 72-78.
[80]
Gerson, C.; Sabater, J.; Scuri, M.; Torbati, A.; Coffey, R.; Abraham, J.W.; Lauredo, I.; Forteza, R.; Wanner, A.; Salathe, M.; Abraham, W.M.; Conner, G.E. The lactoperoxidase system functions in bacterial clearance of airways. Am. J. Resp. Cell Mol., 2000, 22, 665-671.
[81]
Almehdar, H.A.; El-Fakharany, E.M.; Uversky, V.N.; Redwan, E.M. Disorder in milk proteins: Structure, functional disorder, and biocidal potentials of lactoperoxidase. Curr. Protein Pept. Sci., 2015, 16, 352-365.
[82]
Boscolo, B.; Leal, S.S.; Ghibaudi, E.M.; Ghihaudi, E.M.; Gomes, C.M. Lactoperoxidase folding and catalysis relies on the stabilization of the alpha-helix rich core domain: a thermal unfolding study. Biochim. Biophys. Acta, 2007, 1774, 1164-1172.
[83]
Boscolo, B.; Leal, S.S.; Salgueiro, C.A.; Ghihaudi, E.M.; Gomes, C.M. The prominent conformational plasticity of lactoperoxidase:
A chemical and pH stability analysis. BBA - Proteins Proteom., 2009, 1794, 1041-1048.