[1]
Song, P.; Zhang, R.; Wang, X.; He, P.; Tan, L.; Ma, X. Dietary grape-seed procyanidins decreased postweaning diarrhea by modulating intestinal permeability and suppressing oxidative stress in rats. J. Agric. Food Chem., 2011, 59(11), 6227-6232.
[2]
Gracia-Rubio, I.; Moscoso-Castro, M.; Pozo, O.J.; Marcos, J.; Nadal, R.; Valverde, O. Maternal separation induces neuroinflammation and long-lasting emotional alterations in mice. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2016, 65, 104-117.
[3]
Nakamura, K.; Kikusui, T.; Takeuchi, Y.; Mori, Y. The influence of early weaning on aggressive behavior in mice. J. Vet. Med. Sci., 2003, 65(12), 1347-1349.
[4]
Curley, J.P.; Jordan, E.R.; Swaney, W.T.; Izraelit, A.; Kammel, S.; Champagne, F.A. The meaning of weaning: Influence of the weaning period on behavioral development in mice. Dev. Neurosci., 2009, 31(4), 318-331.
[5]
Gottlieb, A.; Keydar, I.; Epstein, H.T. Rodent brain growth stages: An analytical review. Biol. Neonate, 1977, 32(3-4), 166-176.
[6]
Murakami, T.; Ohtsuka, A.; Taguchi, T.; Piao, D.X. Perineuronal sulfated proteoglycans and dark neurons in the brain and spinal cord: A histochemical and electron microscopic study of newborn and adult mice. Arch. Histol. Cytol., 1995, 58(5), 557-565.
[7]
Kikusui, T.; Kiyokawa, Y.; Mori, Y. Deprivation of mother-pup interaction by early weaning alters myelin formation in male, but not female, ICR mice. Brain Res., 2007, 1133(1), 115-122.
[8]
Duque, A.; Coman, D.; Carlyle, B.C.; Bordner, K.A.; George, E.D.; Papademetris, X.; Hyder, F.; Simen, A.A. Neuroanatomical changes in a mouse model of early life neglect. Brain Struct. Funct., 2012, 217(2), 459-472.
[9]
Kikusui, T.; Ichikawa, S.; Mori, Y. Maternal deprivation by early weaning increases corticosterone and decreases hippocampal BDNF and neurogenesis in mice. Psychoneuroendocrinology, 2009, 34(5), 762-772.
[10]
Han, M.; Wang, C.; Liu, P.; Li, D.; Li, Y.; Ma, X. Dietary fiber gap and host gut microbiota. Protein Pept. Lett., 2017, 24(5), 388-396.
[11]
Demotes-Mainard, J.; Henry, C.; Jeantet, Y.; Arsaut, J.; Arnauld, E. Postnatal ontogeny of dopamine D3 receptors in the mouse brain: Autoradiographic evidence for a transient cortical expression. Brain Res. Dev. Brain Res., 1996, 94(2), 166-174.
[12]
Nakamura, K.; Kikusui, T.; Takeuchi, Y.; Mori, Y. Changes in social instigation- and food restriction-induced aggressive behaviors and hippocampal 5HT1B mRNA receptor expression in male mice from early weaning. Behav. Brain Res., 2008, 187(2), 442-448.
[13]
Pellerin, L.; Pellegri, G.; Martin, J.L.; Magistretti, P.J. Expression of monocarboxylate transporter mRNAs in mouse brain: Support for a distinct role of lactate as an energy substrate for the neonatal vs. adult brain. Proc. Natl. Acad. Sci. USA, 1998, 95(7), 3990-3995.
[14]
Bayer, S.A. Development of the hippocampal region in the rat. II. Morphogenesis during embryonic and early postnatal life. J. Comp. Neurol., 1980, 190(1), 115-134.
[15]
Hodge, R.D.; Kowalczyk, T.D.; Wolf, S.A.; Encinas, J.M.; Rippey, C.; Enikolopov, G.; Kempermann, G.; Hevner, R.F. Intermediate progenitors in adult hippocampal neurogenesis: Tbr2 expression and coordinate regulation of neuronal output. J. Neurosci., 2008, 28(14), 3707-3717.
[16]
Tanaka, T.; Abe, H.; Kimura, M.; Onda, N.; Mizukami, S.; Yoshida, T.; Shibutani, M. Developmental exposure to T-2 toxin reversibly affects postnatal hippocampal neurogenesis and reduces neural stem cells and progenitor cells in mice. Arch. Toxicol., 2016, 90(8), 2009-2024.
[17]
Clarke, G.; Grenham, S.; Scully, P.; Fitzgerald, P.; Moloney, R.D.; Shanahan, F.; Dinan, T.G.; Cryan, J.F. The microbiome-gut-brain axis during early life regulates the hippocampal serotonergic system in a sex-dependent manner. Mol. Psychiatry, 2013, 18(6), 666-673.
[18]
Neufeld, K.M.; Kang, N.; Bienenstock, J.; Foster, J.A. Reduced anxiety-like behavior and central neurochemical change in germ-free mice., Neurogastroenterol. Motil.,. 2011, 23(3), 255-264, e119..
[19]
Nishie, H.; Miyata, R.; Fujikawa, R.; Kinoshita, K.; Muroi, Y.; Ishii, T. Post-weaning mice fed exclusively milk have deficits in induction of long-term depression in the CA1 hippocampal region and spatial learning and memory. Neurosci. Res., 2012, 73(4), 292-301.
[20]
Cheng, Y.; Gidday, J.M.; Yan, Q.; Shah, A.R.; Holtzman, D.M. Marked age-dependent neuroprotection by brain-derived neurotrophic factor against neonatal hypoxic-ischemic brain injury. Ann. Neurol., 1997, 41(4), 521-529.
[21]
Levine, E.S.; Dreyfus, C.F.; Black, I.B.; Plummer, M.R. Differential effects of NGF and BDNF on voltage-gated calcium currents in embryonic basal forebrain neurons. J. Neurosci., 1995, 15(4), 3084-3091.
[22]
Mogi, K.; Ishida, Y.; Nagasawa, M.; Kikusui, T. Early weaning impairs fear extinction and decreases brain-derived neurotrophic factor expression in the prefrontal cortex of adult male C57BL/6 mice. Dev. Psychobiol., 2016, 58(8), 1034-1042.
[23]
Gorski, J.A.; Zeiler, S.R.; Tamowski, S.; Jones, K.R. Brain-derived neurotrophic factor is required for the maintenance of cortical dendrites. J. Neurosci., 2003, 23(17), 6856-6865.
[24]
Maeda, N.; Kawakami, S.; Ohmoto, M.; le Coutre, J.; Vinyes-Pares, G.; Arigoni, F.; Okada, S.; Abe, K.; Aizawa, H.; Misaka, T. Differential expression analysis throughout the weaning period in the mouse cerebral cortex. Biochem. Biophys. Res. Commun., 2013, 431(3), 437-443.
[25]
De Pietri, T.D.; Pulvers, J.N.; Haffner, C.; Murchison, E.P.; Hannon, G.J.; Huttner, W.B. miRNAs are essential for survival and differentiation of newborn neurons but not for expansion of neural progenitors during early neurogenesis in the mouse embryonic neocortex. Development, 2008, 135(23), 3911-3921.
[26]
Murofushi, W.; Mori, K.; Murata, K.; Yamaguchi, M. Functional development of olfactory tubercle domains during weaning period in mice. Sci. Rep., 2018, 8(1), 13204.
[27]
Motoike, T.; Skach, A.G.; Godwin, J.K.; Sinton, C.M.; Yamazaki, M.; Abe, M.; Natsume, R.; Sakimura, K.; Yanagisawa, M. Transient expression of neuropeptide W in postnatal mouse hypothalamus--a putative regulator of energy homeostasis. Neuroscience, 2015, 301, 323-337.
[28]
Bordner, K.A.; George, E.D.; Carlyle, B.C.; Duque, A.; Kitchen, R.R.; Lam, T.T.; Colangelo, C.M.; Stone, K.L.; Abbott, T.B.; Mane, S.M.; Nairn, A.C.; Simen, A.A. Functional genomic and proteomic analysis reveals disruption of myelin-related genes and translation in a mouse model of early life neglect. Front. Psychiatry, 2011, 2, 18.
[29]
Ono, M.; Kikusui, T.; Sasaki, N.; Ichikawa, M.; Mori, Y.; Murakami-Murofushi, K. Early weaning induces anxiety and precocious myelination in the anterior part of the basolateral amygdala of male Balb/c mice. Neuroscience, 2008, 156(4), 1103-1110.
[30]
Kodama, Y.; Kikusui, T.; Takeuchi, Y.; Mori, Y. Effects of early weaning on anxiety and prefrontal cortical and hippocampal myelination in male and female Wistar rats. Dev. Psychobiol., 2008, 50(4), 332-342.
[31]
Fujikura, K.; Setsu, T.; Tanigaki, K.; Abe, T.; Kiyonari, H.; Terashima, T.; Sakisaka, T. Kif14 mutation causes severe brain malformation and hypomyelination. PLoS One, 2013, 8(1)e53490
[32]
Haque, Z.U.; Mozaffar, Z. Importance of dietary cholesterol for the maturation of mouse brain myelin. Biosci. Biotechnol. Biochem., 1992, 56(8), 1351-1354.
[33]
Ma, N.; Guo, P.; Zhang, J.; He, T.; Kim, S.W.; Zhang, G.; Ma, X. Nutrients mediate intestinal bacteria-mucosal immune crosstalk. Front. Immunol., 2018, 9, 5.
[34]
Du, K.; Wang, C.; Liu, P.; Li, Y.; Ma, X. Effects of dietary mycotoxins on gut microbiome. Protein Pept. Lett., 2017, 24(5), 397-405.
[35]
Hoban, A.E.; Stilling, R.M.; Ryan, F.J.; Shanahan, F.; Dinan, T.G.; Claesson, M.J.; Clarke, G.; Cryan, J.F. Regulation of prefrontal cortex myelination by the microbiota. Transl. Psychiatry, 2016, 6e774
[36]
Kabouridis, P.S.; Lasrado, R.; McCallum, S.; Chng, S.H.; Snippert, H.J.; Clevers, H.; Pettersson, S.; Pachnis, V. Microbiota controls the homeostasis of glial cells in the gut lamina propria. Neuron, 2015, 85(2), 289-295.
[37]
Yamashita, T.; Wu, Y.P.; Sandhoff, R.; Werth, N.; Mizukami, H.; Ellis, J.M.; Dupree, J.L.; Geyer, R.; Sandhoff, K.; Proia, R.L. Interruption of ganglioside synthesis produces central nervous system degeneration and altered axon-glial interactions. Proc. Natl. Acad. Sci. USA, 2005, 102(8), 2725-2730.
[38]
Partadiredja, G.; Simpson, R.; Bedi, K.S. The effects of pre-weaning undernutrition on the expression levels of free radical deactivating enzymes in the mouse brain. Nutr. Neurosci., 2005, 8(3), 183-193.
[39]
Dutra-Tavares, A.C.; Silva, J.O.; Nunes-Freitas, A.L.; Guimaraes, V.; Araujo, U.C.; Conceicao, E. Moura, E.G.; Lisboa, P.C.; Filgueiras, C.C.; Manhaes, A.C.; Abreu-Villaca, Y.; Ribeiro-Carvalho, A. Maternal undernutrition during lactation alters nicotine reward and DOPAC/dopamine ratio in cerebral cortex in adolescent mice, but does not affect nicotine-induced nAChRs upregulation. Int. J. Dev. Neurosci., 2018, 65, 45-53.
[40]
Sadagurski, M.; Landeryou, T.; Cady, G.; Bartke, A.; Bernal-Mizrachi, E.; Miller, R.A. Transient early food restriction leads to hypothalamic changes in the long-lived crowded litter female mice. Physiol. Rep., 2015, 3(4)e12379
[41]
Langie, S.A.; Achterfeldt, S.; Gorniak, J.P.; Halley-Hogg, K.J.; Oxley, D.; van Schooten, F.J.; Godschalk, R.W.; McKay, J.A.; Mathers, J.C. Maternal folate depletion and high-fat feeding from weaning affects DNA methylation and DNA repair in brain of adult offspring. FASEB J., 2013, 27(8), 3323-3334.
[42]
Li, N.; Qiao, M.; Zhao, Q.; Zhang, P.; Song, L.; Li, L.; Cui, C. Effects of maternal lead exposure on RGMa and RGMb expression in the hippocampus and cerebral cortex of mouse pups. Brain Res. Bull., 2016, 127, 38-46.
[43]
Li, N.; Li, X.; Li, L.; Zhang, P.; Qiao, M.; Zhao, Q.; Song, L.; Yu, Z. Original Research: The expression of MMP2 and MMP9 in the
hippocampus and cerebral cortex of newborn mice under maternal
lead exposure. Exp. Biol. Med., (Maywood), 2016, 241(16), 1811-1818.
[44]
Li, N.; Zhang, P.; Qiao, M.; Shao, J.; Li, H.; Xie, W. The effects of early life lead exposure on the expression of P2X7 receptor and synaptophysin in the hippocampus of mouse pups. J. Trace Elem. Med. Biol., 2015, 30, 124-128.
[45]
Sanchez-Martin, F.J.; Lindquist, D.M.; Landero-Figueroa, J.; Zhang, X.; Chen, J.; Cecil, K.M.; Medvedovic, M.; Puga, A. Sex- and tissue-specific methylome changes in brains of mice perinatally exposed to lead. Neurotoxicology, 2015, 46, 92-100.
[46]
Horii-Hayashi, N.; Sasagawa, T.; Matsunaga, W.; Matsusue, Y.; Azuma, C.; Nishi, M. Developmental changes in desensitisation of c-Fos expression induced by repeated maternal separation in pre-weaned mice. J. Neuroendocrinol., 2013, 25(2), 158-167.
[47]
Heiderstadt, K.M.; Vandenbergh, D.J.; Gyekis, J.P.; Blizard, D.A. Communal nesting increases pup growth but has limited effects on adult behavior and neurophysiology in inbred mice. J. Am. Assoc. Lab. Anim. Sci., 2014, 53(2), 152-160.
[48]
Branchi, I.; D’Andrea, I.; Cirulli, F.; Lipp, H.P.; Alleva, E. Shaping brain development: mouse communal nesting blunts adult neuroendocrine and behavioral response to social stress and modifies chronic antidepressant treatment outcome. Psychoneuroendocrinology, 2010, 35(5), 743-751.
[49]
Branchi, I.; D’Andrea, I.; Fiore, M.; Di Fausto, V.; Aloe, L.; Alleva, E. Early social enrichment shapes social behavior and nerve growth factor and brain-derived neurotrophic factor levels in the adult mouse brain. Biol. Psychiatry, 2006, 60(7), 690-696.
[50]
Oddi, D.; Subashi, E.; Middei, S.; Bellocchio, L.; Lemaire-Mayo, V.; Guzman, M.; Crusio, W.E.; D’Amato, F.R.; Pietropaolo, S. Early social enrichment rescues adult behavioral and brain abnormalities in a mouse model of fragile X syndrome. Neuropsychopharmacology, 2015, 40(5), 1113-1122.
[51]
Takai, Y.; Kawai, M.; Ogo, T.; Ichinose, T.; Furuya, S.; Takaki, N.; Tone, Y.; Udo, H.; Furuse, M.; Yasuo, S. Early-life Photoperiod influences depression-like behavior, prepulse inhibition of the acoustic startle response, and hippocampal astrogenesis in mice. Neuroscience, 2018, 374, 133-143.
[52]
Benner, S.; Endo, T.; Endo, N.; Kakeyama, M.; Tohyama, C. Early deprivation induces competitive subordinance in C57BL/6 male mice. Physiol. Behav., 2014, 137, 42-52.
[53]
Zhang, L.F.; Shi, L.; Liu, H.; Meng, F.T.; Liu, Y.J.; Wu, H.M.; Du, X.; Zhou, J.N. Increased hippocampal tau phosphorylation and axonal mitochondrial transport in a mouse model of chronic stress. Int. J. Neuropsychopharmacol., 2012, 15(3), 337-348.
[54]
D’Amato, F.R.; Zanettini, C.; Sgobio, C.; Sarli, C.; Carone, V.; Moles, A.; Ammassari-Teule, M. Intensification of maternal care by double-mothering boosts cognitive function and hippocampal morphology in the adult offspring. Hippocampus, 2011, 21(3), 298-308.
[55]
Simonetti, T.; Lee, H.; Bourke, M.; Leamey, C.A.; Sawatari, A. Enrichment from birth accelerates the functional and cellular development of a motor control area in the mouse. PLoS One, 2009, 4(8)e6780
[56]
Branchi, I.; D’Andrea, I.; Sietzema, J.; Fiore, M.; Di Fausto, V.; Aloe, L.; Alleva, E. Early social enrichment augments adult hippocampal BDNF levels and survival of BrdU-positive cells while increasing anxiety- and “depression”-like behavior. J. Neurosci. Res., 2006, 83(6), 965-973.
[57]
Fan, C.; Fu, H.; Dong, H.; Lu, Y.; Lu, Y.; Qi, K. Maternal n-3 polyunsaturated fatty acid deprivation during pregnancy and lactation affects neurogenesis and apoptosis in adult offspring: Associated with DNA methylation of brain-derived neurotrophic factor transcripts. Nutr. Res., 2016, 36(9), 1013-1021.
[58]
Woronowicz, A.; Cawley, N.X.; Peng, L.Y. Carbamazepine prevents hippocampal neurodegeneration in mice lacking the neuroprotective protein, carboxypetidase E. Clin. Pharmacol. Biopharm., 2012(Suppl. 1), 2.
[59]
Bouayed, J.; Desor, F.; Rammal, H.; Kiemer, A.K.; Tybl, E.; Schroeder, H.; Rychen, G.; Soulimani, R. Effects of lactational exposure to benzo[alpha]pyrene (B[alpha]P) on postnatal neurodevelopment, neuronal receptor gene expression and behaviour in mice. Toxicology, 2009, 259(3), 97-106.
[60]
Tozuka, Y.; Kumon, M.; Wada, E.; Onodera, M.; Mochizuki, H.; Wada, K. Maternal obesity impairs hippocampal BDNF production and spatial learning performance in young mouse offspring. Neurochem. Int., 2010, 57(3), 235-247.
[61]
Li, N.; Liu, F.; Song, L.; Zhang, P.; Qiao, M.; Zhao, Q.; Li, W. The effects of early life Pb exposure on the expression of IL1-beta, TNF-alpha and Abeta in cerebral cortex of mouse pups. J. Trace Elem. Med. Biol., 2014, 28(1), 100-104.
[62]
Li, N.; Yu, Z.L.; Wang, L.; Zheng, Y.T.; Jia, J.X.; Wang, Q.; Zhu, M.J.; Liu, X.H.; Xia, X.; Li, W.J. Early-life lead exposure affects the activity of TNF-alpha and expression of SNARE complex in hippocampus of mouse pups. Biol. Trace Elem. Res., 2009, 132(1-3), 227-238.
[63]
Wang, L.; Shiraki, A.; Itahashi, M.; Akane, H.; Abe, H.; Mitsumori, K.; Shibutani, M. Aberration in epigenetic gene regulation in hippocampal neurogenesis by developmental exposure to manganese chloride in mice. Toxicol. Sci., 2013, 136(1), 154-165.
[64]
Wang, L.; Ohishi, T.; Shiraki, A.; Morita, R.; Akane, H.; Ikarashi, Y.; Mitsumori, K.; Shibutani, M. Developmental exposure to manganese chloride induces sustained aberration of neurogenesis in the hippocampal dentate gyrus of mice. Toxicol. Sci., 2012, 127(2), 508-521.
[65]
Jaya, P.R.; Hariprasad, R.G.; Bhuvaneswari, D.C.; Rajarami, R.G. Zinc and calcium reduce lead induced perturbations in the aminergic system of developing brain. Biometals, 2005, 18(6), 615-626.