Generic placeholder image

Current Medical Imaging

Editor-in-Chief

ISSN (Print): 1573-4056
ISSN (Online): 1875-6603

Review Article

Three Dimensional Reconstruction Models for Medical Modalities: A Comprehensive Investigation and Analysis

Author(s): Sushitha Susan Joseph and Aju Dennisan*

Volume 16, Issue 6, 2020

Page: [653 - 668] Pages: 16

DOI: 10.2174/1573405615666190124165855

Price: $65

Abstract

Background: Image reconstruction is the mathematical process which converts the signals obtained from the scanning machine into an image. The reconstructed image plays a fundamental role in the planning of surgery and research in the medical field.

Discussion: This paper introduces the first comprehensive survey of the literature about medical image reconstruction related to diseases, presenting a categorical study about the techniques and analyzing advantages and disadvantages of each technique. The images obtained by various imaging modalities like MRI, CT, CTA, Stereo radiography and Light field microscopy are included. A comparison on the basis of the reconstruction technique, Imaging Modality and Visualization, Disease, Metrics for 3D reconstruction accuracy, Dataset and Execution time, Evaluation of the technique is also performed.

Conclusion: The survey makes an assessment of the suitable reconstruction technique for an organ, draws general conclusions and discusses the future directions.

Keywords: Medical image visualization, 3D reconstruction, poisson surface reconstruction, marching cubes, delaunay’s triangulation, OCSVM, ISSSVM, statistical shape models.

Graphical Abstract

[1]
Landes CA, Weichert F, Geis P, Helga F, Wagner M. Evaluation of two 3D virtual computer reconstructions for comparison of cleft lip and palate to normal fetal microanatomy. Anat Rec A Discov Mol Cell Evol Biol 2006; 288(3): 248-62.
[http://dx.doi.org/10.1002/ar.a.20289] [PMID: 16456872]
[2]
Wang CS, Wang WH, Lin MC. STL rapid prototyping bio-CAD model for CT medical image segmentation. Comput Ind 2010; 61(3): 187-97.
[http://dx.doi.org/10.1016/j.compind.2009.09.005]
[3]
De Paolis LT, Pulimeno M, Aloisio G. Visualization and interaction systems for surgical planning. In: 32nd International Conference on Information Technology Interfaces. Cavtat: Croatia 2010; pp. 269-74.
[4]
Lamadé W, Glombitza G, Fischer L, et al. The impact of 3-dimensional reconstructions on operation planning in liver surgery. Arch Surg 2000; 135(11): 1256-61.
[http://dx.doi.org/10.1001/archsurg.135.11.1256] [PMID: 11074877]
[5]
Lang H, Radtke A, Hindennach M, et al. Impact of virtual tumor resection and computer-assisted risk analysis on operation planning and intraoperative strategy in major hepatic resection. Arch Surg 2005; 140(7): 629-38.
[http://dx.doi.org/10.1001/archsurg.140.7.629] [PMID: 16027326]
[6]
Hansen C, Zidowitz S, Preim B, Stavrou G, Oldhafer KJ, Hahn HK. Impact of model-based risk analysis for liver surgery planning. Int J CARS 2014; 9(3): 473-80.
[http://dx.doi.org/10.1007/s11548-013-0937-0] [PMID: 24122443]
[7]
Lamata P, Lamata F, Sojar V, et al. Use of the Resection Map system as guidance during hepatectomy. Surg Endosc 2010; 24(9): 2327-37.
[http://dx.doi.org/10.1007/s00464-010-0915-3] [PMID: 20177937]
[8]
Nizam MS, Abdullah BJJ. Ahmad Magnetic resonance imaging: Health effects and safe-ty. In: Proceedings of the International Conference on Non-Ionizing Radiation at UNITEN. Kuala Lumpur: Malaysia 2003; pp. 1-15.
[9]
Berger A. Magnetic resonance imaging. BMJ 2002; 324(7328): 35.
[http://dx.doi.org/10.1136/bmj.324.7328.35] [PMID: 11777806]
[10]
Zhao M, Beauregard DA, Loizou L, Davletov B, Brindle KM. Non-invasive detection of apoptosis using magnetic resonance imaging and a targeted contrast agent. Nat Med 2001; 7(11): 1241-4.
[http://dx.doi.org/10.1038/nm1101-1241] [PMID: 11689890]
[11]
Herman GT, Ed. Fundamentals of computerized tomography: image reconstruction from projections. Berlin: Springer 2009.
[http://dx.doi.org/10.1007/978-1-84628-723-7]
[12]
Gamage P, Xie SQ, Delmas P, Xu WL. Diagnostic radiograph based 3D bone reconstruction framework: application to the femur. Comput Med Imaging Graph 2011; 35(6): 427-37.
[http://dx.doi.org/10.1016/j.compmedimag.2010.09.008] [PMID: 21621977]
[13]
Yazici M, Acaroglu ER, Alanay A, Deviren V, Cila A, Surat A. Measurement of vertebral rotation in standing versus supine position in adolescent idiopathic scoliosis. J Pediatr Orthop 2001; 21(2): 252-6.
[http://dx.doi.org/10.1097/01241398-200103000-00025] [PMID: 11242262]
[14]
Elias M, Ayman A, Rami E, Ismat G. EOS® biplanar X-ray imaging: concept, developments, benefits, and limitations. J Child Orthop 2016; 10(1): 1-14.
[15]
Woods KM, Fischer C, Cheezum MK, Hulten EA, Nguyen B, Villines TC. The prognostic significance of coronary CT angiography. Curr Cardiol Rep 2012; 14(1): 7-16.
[http://dx.doi.org/10.1007/s11886-011-0226-x] [PMID: 22052234]
[16]
Yu Y, Zhou K, Xu D, et al. Mesh editing with Poisson-based gradient field manipulation. ACM Trans Graph 2004; 23(3): 644-51.
[http://dx.doi.org/10.1145/1186562.1015774]
[17]
Pérez P, Gangnet M, Blake A. Poisson image editing. ACM Trans Graph 2003; 22(3): 313-8.
[http://dx.doi.org/10.1145/1201775.882269]
[18]
Fattal R, Lischinksi D, Werman M. Gradient domain high dynamic range compression. ACM Trans Graph 2002; 21(3): 249-56.
[http://dx.doi.org/10.1145/566570.566573]
[19]
Losasso F, Gibou F, Fedkiw R. Simulating water and smoke with an octree data structure. ACM Trans Graph 2004; 23(3): 457-62.
[20]
Goodnight N, Woolley C, Lewin G, Luebke D, Humphreys G. A multigrid solver for boundary value problems using programmable graphics hardware. Graph Hardware 2003; 2003: 102-11.
[21]
Kazhdan M, Bolitho M, Hoppe H. Poisson surface reconstruction. In: Proceedings of Eurographics Symposium on Geometry Processing. Goslar: Germany 2006; pp. 61-70.
[22]
Leonardi V, Vidal V, Mari J, Daniel M. 3D reconstruction from CT-scan volume dataset application to kidney modeling. In: Proceedings of the 27th Spring Conference on Computer Graphics. New York: NY, USA 2000; pp. 111-20.
[23]
Palomar R, Cheikh FA, Edwin B, Beghdadhi A, Elle OJ. Surface reconstruction for planning and navigation of liver resections. Comput Med Imaging Graph 2016; 53: 30-42.
[http://dx.doi.org/10.1016/j.compmedimag.2016.07.003] [PMID: 27490316]
[24]
Khaleel HH, Rahmat ROK, Zamrin DM, Mahmod R, Mustapha N. 3D surface reconstruction of coronary artery trees for vessel locations’ detection. Arab J Sci Eng 2014; 39: 1749-73.
[http://dx.doi.org/10.1007/s13369-013-0775-y]
[25]
Lorensen W, Cline H. Marching cubes: a high-resolution 3D surface construction algorithm. Comput Graph 1987; 21(4): 163-9.
[http://dx.doi.org/10.1145/37402.37422]
[26]
Heiden W, Goetze T, Brickmann J. Fast generation of molecular surfaces from 3D data fields with an enhanced marching cube algorithm. J Comput Chem 1993; 14(2): 246-50.
[http://dx.doi.org/10.1002/jcc.540140212]
[27]
Yim PJ, Vasbinder GB, Ho VB, Choyke PL. Isosurfaces as deformable models for magnetic resonance angiography. IEEE Trans Med Imaging 2003; 22(7): 875-81.
[http://dx.doi.org/10.1109/TMI.2003.815056] [PMID: 12906241]
[28]
Lin F, Seah HS, Lee YT. Deformable volumetric model and isosurface: exploring a new approach for surface boundary construction. Comput Graph 1996; 20(1): 33-40.
[http://dx.doi.org/10.1016/0097-8493(95)00090-9]
[29]
Ferley E, Cani M-P, Gascuel J-D. Practical volumetric sculpting. Vis Comput 2000; 16(8): 469-80.
[http://dx.doi.org/10.1007/PL00007216]
[30]
Stein R, Shih A, Baker M, Cerco C, Noel M. Scientific visualization of water quality in the chesapeake bay. In: Proceedings Visualization 2000 (Cat No00CH37145);. Salt Lake City: UT, USA; 2000; pp. 509-12.
[http://dx.doi.org/10.1109/VISUAL.2000.885744]
[31]
Matsuda H, Cingoski V, Kaneda K, Yamashita H, Takehara J, Tatewaki I. Extraction and visualization of semitransparent isosurfaces for 3D finite element analysis. IEEE Trans Magn 1999; 35(3): 1365-74.
[http://dx.doi.org/10.1109/20.767216]
[32]
Trembilski A. Two methods for cloud visualization from weather simulation data. Vis Comput 2001; 17: 179-84.
[http://dx.doi.org/10.1007/PL00013405]
[33]
Kim K, Wittenbrink C, Pang A. Data level comparison of surface classification and gradient filters. In: Proceedings of Joint International Workshop on Volume Graphics. Stony Brook, New York 2001; pp. 249-63.
[http://dx.doi.org/10.1007/978-3-7091-6756-4_2]
[34]
Arakeri MP, Reddy GRM. An effective and efficient approach to 3d reconstruction and quantification of brain tumor on magnetic resonance images. Int J Signal Process 2013; 6(3): 112-9.
[35]
Gnonnou C, Smaoui N. Segmentation and 3D reconstruction of MRI images for breast cancer detection. In: International Image Processing, Applications and Systems Conference;. Sfax: Tunisia 2014; pp. 1-6.
[http://dx.doi.org/10.1109/IPAS.2014.7043316]
[36]
Basuki DK, Sigit R. 3D heart image reconstruction and visualization with marching cubes algorithm. In: International Conference on Knowledge Creation and Intelligent Computing (KCIC);. Manado: Indonesia 2016; pp. 35-41.
[37]
Vassiliki I. 3D reconstruction of coronary arteries and atherosclerotic plaques based on computed tomography angiography images. Biomed Signal Process Control 2018; 2018: 286-94.
[38]
Budoff MJ, Achenbach S, Blumenthal RS, et al. Assessment of coronary artery disease by cardiac computed tomography: a scientific statement from the American Heart Association Committee on Cardiovascular Imaging and Intervention, Council on Cardiovascular Radiology and Intervention, and Committee on Cardiac Imaging, Council on Clinical Cardiology. Circulation 2006; 114(16): 1761-91.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.106.178458] [PMID: 17015792]
[39]
Mun D, Kim BC. Three-dimensional solid reconstruction of a human bone from CT images using interpolation with triangular Bézier patches. J Mech Sci Technol 2017; 31(8): 3875-86.
[http://dx.doi.org/10.1007/s12206-017-0732-x]
[40]
Thompson JF, Soni BK, Weatherill NP, Eds. Handbook of grid generation. CRC Press: Florida 1999.
[41]
Goodman JE, O’Rourke J, Tóth CD. Handbook of discrete and computational geometry. CRC Press: Florida 1997.
[42]
Tawbe K, Cotton F, Vuillon L. Evolution of brain tumor and stability of geometric invariants. Int J Telemed Appl 2008; 2008: 1-12.
[43]
Bharathi A S. Manimegalai, 3D Digital reconstruction of brain tumour from MRI scans using Delaunay triangulation and patches 2015; 10(20): 9227-32.
[44]
Manevitz L, Yousef M. One-class svms for document classification. J Mach Learn Res 2001; 2: 139-54.
[45]
Wang L, Xu G, Guo L, Liu X, Yang S. 3D reconstruction of head MRI based on one class support vector machine with immune algorithm. In: 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society;. Lyon: France 2007; pp. 6015-8.
[46]
Lecron F, Boisvert J, Mahmoudi S, Labelle H, Benjelloun M. Three-dimensional spine model reconstruction using one-class SVM regularization. IEEE Trans Biomed Eng 2013; 60(11): 3256-64.
[http://dx.doi.org/10.1109/TBME.2013.2272657] [PMID: 23864145]
[47]
Guo L, Li Y, Miao D, Zhao L, Yan W, Shen X. 3-D Reconstruction of encephalic tissue in MR images using immune sphere-shaped SVMs. IEEE Trans Magn 2011; 47(5): 870-3.
[http://dx.doi.org/10.1109/TMAG.2010.2072776]
[48]
Haghpanahi M, Javadi M. A three dimensional parametric model of whole lower cervical spine (C3–C7) under flexion, extension, torsion and lateral bending. Sci Iran 19(1): 142-50.
[49]
Mitton PD, Laporte S, de Guise JA, Skalli W. Fast accurate stereoradiographic 3D-reconstruction of the spine using a combined geometric and statistic model. Clin Biomech (Bristol, Avon) 2004; 19: 240-7.
[http://dx.doi.org/10.1016/j.clinbiomech.2003.11.014] [PMID: 15003338]
[50]
Humbert L, De Guise JA, Aubert B, Godbout B, Skalli W. 3D reconstruction of the spine from biplanar X-rays using parametric models based on transversal and longitudinal inferences. Med Eng Phys 2009; 31(6): 681-7.
[http://dx.doi.org/10.1016/j.medengphy.2009.01.003] [PMID: 19230743]
[51]
Chaibi Y, Cresson T, Aubert B, et al. Fast 3D reconstruction of the lower limb using a parametric model and statistical inferences and clinical measurements calculation from biplanar X-rays. Comput Methods Biomech Biomed Engin 2012; 15(5): 457-66.
[http://dx.doi.org/10.1080/10255842.2010.540758] [PMID: 21229412]
[52]
Quijano S, Serrurier A, Aubert B, Laporte S, Thoreux P, Skalli W. Three-dimensional reconstruction of the lower limb from biplanar calibrated radiographs. Med Eng Phys 2013; 35(12): 1703-12.
[http://dx.doi.org/10.1016/j.medengphy.2013.07.002] [PMID: 23938086]
[53]
Kumar SK, Nayak P, Hareesha KS, et al. Quantification of spinal deformities using combined SCP and geometric 3D reconstruction. Biomed Signal Process Control 2017; 31: 181-8.
[http://dx.doi.org/10.1016/j.bspc.2016.08.004]
[54]
Jung YS, Kim HJ, Choi SW, Kang JW, Cha IH. Regional thickness of parietal bone in Korean adults. Int J Oral Maxillofac Surg 2003; 32(6): 638-41.
[http://dx.doi.org/10.1054/ijom.2002.0415] [PMID: 14636616]
[55]
Lynnerup N. Cranial thickness in relation to age, sex and general body build in a Danish forensic sample. Forensic Sci Int 2001; 117(1-2): 45-51.
[http://dx.doi.org/10.1016/S0379-0738(00)00447-3] [PMID: 11230945]
[56]
Kidder JH, Durband AC. A re-evaluation of the metric diversity within Homo erectus. J Hum Evol 2004; 46(3): 299-315.
[http://dx.doi.org/10.1016/j.jhevol.2003.12.003] [PMID: 14984785]
[57]
Sommer HJ III, Eckhardt RB, Shiang TY. Superquadric modeling of cranial and cerebral shape and asymmetry. Am J Phys Anthropol 2006; 129(2): 189-95.
[http://dx.doi.org/10.1002/ajpa.20269] [PMID: 16323182]
[58]
Laurent CP, Jolivet E, Hodel J, Decq P, Skalli W. New method for 3D reconstruction of the human cranial vault from CT-scan data. Med Eng Phys 2011; 33: 1270-5.
[http://dx.doi.org/10.1016/j.medengphy.2011.06.002]
[59]
Dumas R, Blanchard B, Carlier R, et al. A semi-automated method using interpolation and optimisation for the 3D reconstruction of the spine from bi-planar radiography: a precision and accuracy study. Med Biol Eng Comput 2008; 46(1): 85-92.
[http://dx.doi.org/10.1007/s11517-007-0253-3] [PMID: 17874152]
[60]
Kadoury S, Cheriet F, Labelle H. Personalized X-ray 3-D reconstruction of the scoliotic spine from hybrid statistical and image-based models. IEEE Trans Med Imaging 2009; 28(9): 1422-35.
[http://dx.doi.org/10.1109/TMI.2009.2016756] [PMID: 19336299]
[61]
Moura DC, Boisvert J, Barbosa JG, Labelle H, Manuel J, Tavares RS. Fast 3D reconstruction of the spine from biplanar radiographs using a deformable articulated model. Med Eng Phys 2011; 33: 924-33.
[http://dx.doi.org/10.1016/j.medengphy.2011.03.007]
[62]
Dworzak J, Lamecker H, von Berg J, et al. 3D reconstruction of the human rib cage from 2D projection images using a statistical shape model. Int J CARS 2010; 5(2): 111-24.
[http://dx.doi.org/10.1007/s11548-009-0390-2] [PMID: 20033504]
[63]
Shamsoddini AR, Hollisaz MT. Effect of sensory integration therapy on gross motor function in children with cerebral palsy. Iran J Child Neurol 2008; 3(1): 43-8.
[64]
Chen YY, Yeh KK, Chen CL. Gross motor function change after multilevel soft tissue release in children with cerebral palsy. Biomed J 2017; 40(3): 163-8.
[65]
Youn K, Park MS, Lee J. Iterative approach for 3D reconstruction of the femur from un-calibrated 2D radiographic images. Med Eng Phys 2017; 50: 89-95.
[http://dx.doi.org/10.1016/j.medengphy.2017.08.016] [PMID: 28927642]
[66]
García-López P, García-Marín V, Freire M. Dendritic spines and development: towards a unifying model of spinogenesis--a present day review of Cajal’s histological slides and drawings. Neural Plast 2010; 2010769207
[http://dx.doi.org/10.1155/2010/769207] [PMID: 21584262]
[67]
Penzes P, Cahill ME, Jones KA, VanLeeuwen J-E, Woolfrey KM. Dendritic spine pathology in neuropsychiatric disorders. Nat Neurosci 2011; 14(3): 285-93.
[http://dx.doi.org/10.1038/nn.2741] [PMID: 21346746]
[68]
Reberger R, Dall’Oglio A, Jung CR, Rasia-Filho AA. Structure and diversity of human dendritic spines evidenced by a new three-dimensional reconstruction procedure for Golgi staining and light microscopy. J Neurosci Methods 2018; 293: 27-36.
[http://dx.doi.org/10.1016/j.jneumeth.2017.09.001] [PMID: 28887132]
[69]
De-xin Z. A method for brain 3D surface reconstruction from MR image. Optoelectron Lett 2014; 10(5): 383-6.
[70]
Zhang J, Lv L, Shi X, et al. 3-D reconstruction of the spine from biplanar radiographs based on contour matching using the Hough transform. IEEE Trans Biomed Eng 2013; 60(7): 1954-64.
[http://dx.doi.org/10.1109/TBME.2013.2246788] [PMID: 23412567]
[71]
Angelopoulou A, Psarrou A, Garcia-Rodriguez J, Orts-Escolano S, Lopez JA, Revett K. 3D reconstruction of medical images from slices automatically landmarked with growing neural models. Neurocomputing 2015; 2015: 16-25.
[http://dx.doi.org/10.1016/j.neucom.2014.03.078]
[72]
Mukundan R. Reconstruction of high resolution 3D meshes of lung geometry from HRCT contours. In: International Symposium on Multimedia (ISM). San Jose: CA, USA 2016; pp. 247-52.
[http://dx.doi.org/10.1109/ISM.2016.0056]
[73]
Kass M, Witkin A, Terzopoulos D. Snakes: active contour models. Int J Comput Vis 1988; 1: 321-31.
[http://dx.doi.org/10.1007/BF00133570]
[74]
Xu C, Prince JL. Snakes, shapes, and gradient vector flow. IEEE Trans Image Process 1998; 7(3): 359-69.
[http://dx.doi.org/10.1109/83.661186] [PMID: 18276256]
[75]
Yang S-C, Yu C-Y, Lin C-J, Lin H-Y, Lin C-Y. Reconstruction of three-dimensional breast-tumor model using multispectral gradient vector flow snake method. J Appl Res Technol 2015; 13: 279-90.
[http://dx.doi.org/10.1016/j.jart.2015.06.014]
[76]
Majeed A, Mt Piah AR, Ridzuan Yahya Z. Surface reconstruction from parallel curves with application to parietal bone fracture reconstruction. PLoS One 2016; 11(3)e0149921
[http://dx.doi.org/10.1371/journal.pone.0149921] [PMID: 26967643]
[77]
Ge W. A perspective on deep Imaging. IEEE Access 2016;; 4: 8914-24.
[78]
Song M, Tao D, Huang X, Chen C, Bu J. Three-dimensional face reconstruction from a single image by a coupled RBF network. IEEE Trans Image Process 2012; 21(5): 2887-97.
[http://dx.doi.org/10.1109/TIP.2012.2183882] [PMID: 22514131]
[79]
Gao Y, Wang M, Ji R, et al. 3-D object retrieval with Hausdorff distance learning. IEEE Trans Ind Electron 2014; 61(4): 2088-98.
[80]
Suo Y, Dao M, Srinivas U, Monga V, Tran TD. Structured dictionary learning for classification. Comp Vis Patt Recogn 2014; 2014: 1406-1943v1.
[81]
Ron R, Bruckstein MA, Elad M. Dictionaries for sparse representation modeling. Proc IEEE 2010; 98(6): 1045-57.
[82]
Olshausen BA, Field DJ. Sparse coding with an overcomplete basis set: a strategy employed by V1? Vision Res 1997; 37(23): 3311-25.
[http://dx.doi.org/10.1016/S0042-6989(97)00169-7] [PMID: 9425546]
[83]
Tosic I, Jovanovi I, Frossard P, Vetterli M, Duric N. Ultrasound tomography with learned dictionaries. In: International Conference on Acoustics, Speech and Signal Processing. Dallas: TX, USA 2010; pp. 5502-5.
[84]
Zhang B, Wang X, Liang X, Zheng J. 3D Reconstruction of human bones based on dictionary learning. Med Eng Phys 2017; 49: 163-70.
[http://dx.doi.org/10.1016/j.medengphy.2017.07.012] [PMID: 28826857]
[85]
Desvignes M, Bailly G, Payan Y. 3D semi-landmarks based statistical face reconstruction J Comput Inform Technol 2006; 14(1): 31-43.
[86]
Claes P, Vandermeulen D, De Greef S, Willems G, Suetens P. Craniofacial reconstruction using a combined statistical model of face shape and soft tissue depths: methodology and validation. Forensic Sci Int 2006; 159(1): S147-58.
[http://dx.doi.org/10.1016/j.forsciint.2006.02.035] [PMID: 16540276]
[87]
Pei Y, Zha H, Yuan Z. The craniofacial reconstruction from the local structural diversity of skulls. Comput Graph Forum 2008; 27(7): 1711-8.
[http://dx.doi.org/10.1111/j.1467-8659.2008.01315.x]
[88]
Berar M, Desvignes M. 3D statistical facial reconstruction. In: Image and Signal Pro-cessing and Analysis (ISPA2005). China: Nanjing 2005; pp. 365-70.
[89]
Fuqing D, Donghua H, Yun T, Ke L, Zhongke W, Mingquan Z. 3D face reconstruction from skull by regression modeling in shape parameter spaces. Neurocomputing 2015; 151: 674-82.
[90]
Yoo D-J. Three-dimensional surface reconstruction of human bone using a B-spline based interpolation approach. Comput Aided Des 2011; 4(8): 934-47.
[91]
Erić M, Anderla A, Stefanović D, Drapšin M. Breast volume estimation from systematic series of CT scans using the Cavalieri principle and 3D reconstruction. Int J Surg 2014; 12(9): 912-7.
[http://dx.doi.org/10.1016/j.ijsu.2014.07.018] [PMID: 25063210]
[92]
Wytyczak-Partyka A. Organ Surface reconstruction using B-splines and Hu moments. Acta Polytech Hung 2014; 11(10): 151-61.
[93]
Zeid I. Mastering CAD/CAM. New York: McGraw-Hill 2005.
[94]
Gürke S. Restoration of teeth by geometrically deformable model. In: Conference of 3D Image Analysis and Synthesis;. Sankt Augustin: Germany 1997; pp. 841-6.
[95]
Zhang CD, Dai N, Liao WH, et al. Partially missing dental occlusion surface adaptive reconstruction Algorithm. Chinese J Biomed Engineer 2012; 31: 203-10.
[96]
Steinbrecher T, Gerth M. Dental inlay and on lay construction by iterative Laplacian Surface Editing. In: Proceedings of Eurographics Symposium on Geometry Processing. Goslar: Germany 2008; pp. 1441-7.
[97]
Blanz V, Mehl A, Vetter T, et al. A statistical method for robust 3D surface reconstruction from sparse data. In: Proceedings of the 2nd International Symposium on 3D Data Processing, Visualization and Transmission;. Thessaloniki: Greece 2004; pp. ii-iii.
[98]
Mehl A, Blanz V, Hickel R. Biogeneric tooth: a new mathematical representation for tooth morphology in lower first molars. Eur J Oral Sci 2005; 113(4): 333-40.
[http://dx.doi.org/10.1111/j.1600-0722.2005.00224.x] [PMID: 16048526]
[99]
Mehl A, Litzenburger A, Blanz V. Functional occlusal CAD-reconstruction of inlay and onlay situations: the biogeneric approach. Aesthetische Zahnmed 2007; 10: 12-8.
[100]
Jiang X, Dai N, Cheng X, et al. Robust tooth surface reconstruction by iterative deformation. Comput Biol Med 2016; 68: 90-100.
[http://dx.doi.org/10.1016/j.compbiomed.2015.11.001] [PMID: 26638148]
[101]
Ma Z, Jorge RN, Mascarenhas T, Tavares JM. A level set based algorithm to reconstruct the urinary bladder from multiple views. Med Eng Phys 2013; 35(12): 1819-24.
[http://dx.doi.org/10.1016/j.medengphy.2013.05.002] [PMID: 23726217]
[102]
Eklund A, Dufort P, Forsberg D, LaConte SM. Medical image processing on the GPU - past, present and future. Med Image Anal 2013; 17(8): 1073-94.
[http://dx.doi.org/10.1016/j.media.2013.05.008] [PMID: 23906631]
[103]
Owens JD. Computer graphics on a stream architecture. PhD thesis, Stanford University 2002.
[104]
Sumpf TJ, Uecker M, Boretius S, Frahm J. Model-based nonlinear inverse reconstruction for T2 mapping using highly undersampled spin-echo MRI. J Magn Reson Imaging 2011; 34: 420-8.
[http://dx.doi.org/10.1002/jmri.22634]
[105]
Ma D, Gulani V, Seiberlich N, et al. Magnetic resonance fingerprinting. Nature 2013; 495(7440): 187-92.
[http://dx.doi.org/10.1038/nature11971] [PMID: 23486058]
[106]
Dikaios N, Arridge S, Hamy V, Punwani S, Atkinson D. Direct parametric reconstruction from undersampled (k, t)-space data in dynamic contrast enhanced MRI. Med Image Anal 2014; 18(7): 989-1001.
[http://dx.doi.org/10.1016/j.media.2014.05.001] [PMID: 24972377]
[107]
Trémoulhéac B, Dikaios N, Atkinson D, Arridge SR. Dynamic MR image reconstruction-separation from undersampled (k,t)-space via low-rank plus sparse prior. IEEE Trans Med Imaging 2014; 33(8): 1689-701.
[http://dx.doi.org/10.1109/TMI.2014.2321190] [PMID: 24802294]
[108]
Zhao B, Lam F, Liang ZP. Model-based MR parameter mapping with sparsity constraints: parameter estimation and performance bounds. IEEE Trans Med Imaging 2014; 33(9): 1832-44.
[http://dx.doi.org/10.1109/TMI.2014.2322815] [PMID: 24833520]
[109]
Hamy V, Dikaios N, Punwani S, et al. Respiratory motion correction in dynamic MRI using robust data decomposition registration - application to DCE-MRI. Med Image Anal 2014; 18(2): 301-13.
[http://dx.doi.org/10.1016/j.media.2013.10.016] [PMID: 24322575]
[110]
Li Y, Chen C, Yang F, Huang J. Hierarchical sparse representation for robust image registration. IEEE Trans Pattern Anal Mach Intell 2018; 40(9): 2151-64.
[http://dx.doi.org/10.1109/TPAMI.2017.2748125] [PMID: 28880157]
[111]
Montani C, Scateni R, Scopigno R. Discretized marching cubes. In: Proceedings of the Conference on Visualization. Washington, DC: USA 1994; pp. 281-7.
[112]
Bernardini F, Mittleman J, Rushmeier H, Silva C, Taubin G. The ball-pivoting algorithm for surface reconstruction. IEEE Trans Vis Comput Graph 1999; 5(4): 349-59.
[http://dx.doi.org/10.1109/2945.817351]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy