[1]
Berg, J.; Tymoczko, J.; Stryer, L. Biochemistry, 5th ed; W.H. Freeman and company: New York, USA, 2002.
[2]
Nelson, D.; Cox, M. Lehninger Principles of Biochemistry, 5th ed; W.H. Freeman and company: New York, USA, 2008.
[3]
Pace, C.N.; Treviño, S.; Prabhakaran, E.; Scholtz, J.M. Protein structure, stability and solubility in water and other solvents. Philos. Trans. R. Soc. B Biol. Sci., 2004, 359(1448), 1225-1235.
[4]
Gromiha, M.M. Protein Bioinformatics from Sequence to Function, 1st ed; Elsevier Inc.: New Delhi, India, 2010.
[5]
Vorobjev, Y.N.; Hermans, J. Free energies of protein decoys provide insight into determinants of protein stability. Protein Sci., 2001, 10, 2498-2506.
[6]
Reece, J.B.; Campbell, N.A.; Myers, N.; Urry, L.A.; Cain, M.L.; Wasserman, S.A.; Minorsky, P.V.; Jackson, R.B.; Cooke, B.N. Campbell Biology; Pearson Education Australia: Sydney, 2011.
[7]
López-Alonso, J.P.; Bruix, M.; Font, J.; Ribó, M.; Vilanova, M.; Jiménez, M.A.; Santoro, J.; González, C.; Laurents, D.V. NMR Spectroscopy reveals that RNase A is chiefly denatured in 40% acetic acid: Implications for oligomer formation by 3D domain swapping. J. Am. Chem. Soc., 2010, 132, 1621-1630.
[8]
Sawyer, W.H.; Puckridge, J. The dissociation of proteins by chaotropic salts. J. Biol. Chem., 1973, 248, 8429-8433.
[9]
Bhuyan, A.K. On the mechanism of SDS-induced protein denaturation. Biopolymers, 2009, 93, 186-199.
[10]
Scholtz, J.M.; Baldwin, R.L. Perchlorate-induced denaturation of ribonuclease A: Investigation of possible folding intermediates. Biochemistry, 1993, 32, 4604-4608.
[11]
Leggio, C.; Galantini, L.; Konarev, P.V.; Pavel, N.V. Urea-induced denaturation process on defatted human serum albumin and in the presence of palmitic acid. J. Phys. Chem. B, 2009, 113, 12590-12602.
[12]
Vagenende, V.; Yap, M.G.S.; Trout, B.L. Mechanisms of protein stabilization and prevention of protein aggregation by glycerol. Biochemistry, 2009, 48, 11084-11096.
[13]
Abe, M.; Abe, Y.; Ohkuri, T.; Mishima, T.; Monji, A.; Kanba, S.; Ueda, T. Mechanism for retardation of amyloid fibril formation by sugars in Vλ6 protein. Protein Sci., 2013, 22, 467-474.
[14]
Kumar, N.; Kishore, N. Protein stabilization and counteraction of denaturing effect of urea by glycine betaine. Biophys. Chem., 2014, 189, 16-24.
[15]
Wang, Y.; Sarkar, M.; Smith, A.E.; Krois, A.S.; Pielak, G.J. Macromolecular crowding and protein stability. J. Am. Chem. Soc., 2012, 134, 16614-16618.
[16]
Cottone, G. A Comparative study of carboxy myoglobin in saccharide-water systems by molecular dynamics simulation. J. Phys. Chem. B, 2007, 111, 3563-3569.
[17]
He, X.M.; Carter, D.C. Atomic structure and chemistry of human serum albumin. Nature, 1992, 358, 209.
[18]
Dockal, M.; Carter, D.C.; Rüker, F. The three recombinant domains of human serum albumin: Structural characterization and ligand binding properties. J. Biol. Chem., 1999, 274, 29303-29310.
[19]
Ghuman, J.; Zunszain, P.A.; Petitpas, I.; Bhattacharya, A.A.; Otagiri, M.; Curry, S. Structural basis of the drug-binding specificity of human serum albumin. J. Mol. Biol., 2005, 353, 38-52.
[20]
Yamasaki, K.; Chuang, V.T.G.; Maruyama, T.; Otagiri, M. Albumin-drug interaction and its clinical implication. Biochim. Biophys. Acta, Gen. Subj., 2013, 1830, 5435-5443.
[21]
Li, S.; Zhao, X.; Mo, Y.; Cummings, P.T.; Heller, W.T. Human serum albumin interactions with C60 fullerene studied by spectroscopy, small-angle neutron scattering, and molecular dynamics simulations. J. Nanopart. Res., 2013, 15, 1769.
[22]
Abou-Zied, O.K. Investigating 2,2‘-Bipyridine-3,3‘-Diol as a microenvironment-sensitive probe: Its binding to cyclodextrins and human serum albumin. J. Phys. Chem. B, 2007, 111, 9879-9885.
[23]
Jana, S.; Dalapati, S.; Ghosh, S.; Guchhait, N. Study of microheterogeneous environment of protein human serum albumin by an extrinsic fluorescent reporter: A spectroscopic study in combination with molecular docking and molecular dynamics simulation. J. Photochem. Photobiol. Bol. Biol., 2012, 112, 48-58.
[24]
Singh, R.B.; Mahanta, S.; Bagchi, A.; Guchhait, N. Interaction of human serum albumin with charge transfer probe ethyl ester of N,N-Dimethylamino Naphthyl Acrylic acid: An extrinsic fluorescence probe for studying protein micro-environment. Photochem. Photobiol. Sci., 2009, 8, 101-110.
[25]
Das, N.; Sen, P. Structural, functional, and dynamical responses of a protein in a restricted environment imposed by macromolecular crowding. Biochemistry, 2018, 57, 6078-6089.
[26]
González-Jiménez, J.; Cortijo, M. Urea-induced denaturation of human serum albumin labeled with acrylodan. J. Protein Chem., 2002, 21, 75-79.
[27]
Flora, K.; Brennan, J.D.; Baker, G.A.; Doody, M.A.; Bright, F.V. Unfolding of acrylodan-labeled human serum albumin probed by steady-state and time-resolved fluorescence methods. Biophys. J., 1998, 75, 1084-1096.
[28]
Shaw, A.K.; Pal, S.K. Spectroscopic studies on the effect of temperature on ph-induced folded states of human serum albumin. J. Photochem. Photobiol. Bol. Biol., 2008, 90, 69-77.
[29]
Wallewik, K. Reversible temperature, denaturation of human serum albumin and guanidine hydrochloride followed by optical rotation. J. Biol. Chem., 1973, 248, 2650-2655.
[30]
Wetzel, R.; Becker, M.; Behlke, J.; Billwitz, H.; Böhm, S.; Ebert, B.; Hamann, H.; Krumbiegel, J.; Lassmann, G. Temperature behaviour of human serum albumin. Eur. J. Biochem., 1980, 104, 469-478.
[31]
Abou-zied, O.K.; Al-Shihi, O.I.K. Characterization of subdomain IIA binding site of human serum albumin in its native, unfolded, and refolded states using small molecular probes. J. Am. Chem. Soc., 2008, 130, 10793-10801.
[32]
Picó, G.A. Thermodynamic features of the thermal unfolding of human serum albumin. Int. J. Biol. Macromol., 1997, 20, 63-73.
[33]
Krishnakumar, S.S.; Panda, D. Spatial relationship between the prodan site, Trp-214, and Cys-34 residues in human serum albumin and loss of structure through incremental unfolding. Biochemistry, 2002, 41, 7443-7452.
[34]
Ahmad, B.; Khan, M.K.A.; Haq, S.K.; Khan, R.H. Intermediate formation at lower urea concentration in “B” isomer of human serum albumin: A case study using domain specific ligands. Biochem. Biophys. Res. Commun., 2004, 314, 166-173.
[35]
Ahmad, B.; Ahmed, M.Z.; Haq, S.K.; Khan, R.H. Guanidine hydrochloride denaturation of human serum albumin originates by local unfolding of some stable loops in domain III. Biochim. Biophys. Acta. Proteins Proteomics, 2005, 1750, 93-102.
[36]
Ahmad, B. Ankita; Khan, R.H. Urea Induced unfolding of f isomer of human serum albumin: A case study using multiple probes. Arch. Biochem. Biophys., 2005, 437, 159-167.
[37]
Galantini, L.; Leggio, C.; Pavel, N.V. Human serum albumin unfolding: A small-angle x-ray scattering and light scattering study. J. Phys. Chem. B, 2008, 112, 15460-15469.
[38]
Del Giudice, A.; Leggio, C.; Balasco, N.; Galantini, L.; Pavel, N.V. Ibuprofen and propofol cobinding effect on human serum albumin unfolding in urea. J. Phys. Chem. B, 2014, 118, 10043-10051.
[39]
Del Giudice, A.; Dicko, C.; Galantini, L.; Pavel, N.V. Time-dependent PH scanning of the acid-induced unfolding of human serum albumin reveals stabilization of the native form by palmitic acid binding. J. Phys. Chem. B, 2017, 121, 4388-4399.
[40]
Heller, W.T. Comparison of the thermal denaturing of human serum albumin in the presence of guanidine hydrochloride and 1-butyl-3-methylimidazolium ionic liquids. J. Phys. Chem. B, 2013, 117, 2378-2383.
[41]
Zhuo, W.; Peng, X.; Lin, X. Insights into the interaction mechanism between tiagabine hydrochloride and two serum albumins. RSC Adv., 2018, 8, 24953-24960.
[42]
Mohan, V.; Sengupta, B.; Acharyya, A.; Yadav, R.; Das, N.; Sen, P. Region-specific double denaturation of human serum albumin : Combined effects of temperature and GnHCl on structural and dynamical responses. ACS Omega, 2018, 3, 10406-10417.
[43]
Muzammil, S.; Kumar, Y.; Tayyab, S. Anion‐induced stabilization of human serum albumin prevents the formation of intermediate during urea denaturation. Proteins Struct. Funct. Bioinform., 2000, 40, 29-38.
[44]
Yadav, R.; Sen, P. Mechanistic investigation of domain specific unfolding of human serum albumin and the effect of sucrose. Protein Sci., 2013, 22, 1571-1581.
[45]
Wang, R.; Sun, S.; Bekos, E.J.; Bright, F.V. Dynamics surrounding Cys-34 in native, chemically denatured, and silica-adsorbed bovine serum albumin. Anal. Chem., 1995, 67, 149-159.
[46]
Sengupta, B.; Acharyya, A.; Sen, P. Elucidation of the local dynamics of domain-III of human serum albumin over the Ps-[Small Mu ]s time regime using a new fluorescent label. Phys. Chem. Chem. Phys., 2016, 18, 28548-28555.
[47]
Zhong, D.; Pal, S.K.; Zewail, A.H. Biological water: A critique. Chem. Phys. Lett., 2011, 503, 1-11.
[48]
Jungwirth, P. Biological water or rather water in biology? J. Phys. Chem. Lett., 2015, 6, 2449-2451.
[49]
Bellissent-Funel, M-C.; Hassanali, A.; Havenith, M.; Henchman, R.; Pohl, P.; Sterpone, F.; van der Spoel, D.; Xu, Y.; Garcia, A.E. Water determines the structure and dynamics of proteins. Chem. Rev., 2016, 116, 7673-7697.
[50]
Nandi, N.; Bagchi, B. Dielectric relaxation of biological water. J. Phys. Chem. B, 1997, 101, 10954-10961.
[51]
Kamal, J.K.A.; Zhao, L.; Zewail, A.H. Ultrafast hydration dynamics in protein unfolding: Human serum albumin. Proc. Natl. Acad. Sci. USA, 2004, 101, 13411-13416.
[52]
Das, D.K.; Mondal, T.; Mandal, U.; Bhattacharyya, K. Probing deuterium isotope effect on structure and solvation dynamics of human serum albumin. ChemPhysChem, 2011, 12, 814-822.
[53]
Chowdhury, R.; Sen Mojumdar, S.; Sen, Chattoraj S.; Bhattacharyya, K. Effect of ionic liquid on the native and denatured state of a protein covalently attached to a probe: Solvation dynamics study. J. Chem. Phys., 2012, 137, 55104.
[54]
Bagchi, B. Water dynamics in the hydration layer around proteins and micelles. Chem. Rev., 2005, 105, 3197-3219.
[55]
Mondal, S.; Mukherjee, S.; Bagchi, B. Origin of diverse time scales in the protein hydration layer solvation dynamics: A simulation study. J. Chem. Phys., 2017, 147, 154901-1-11.
[56]
Ben Ishai, P.; Tripathi, S.R.; Kawase, K.; Puzenko, A.; Feldman, Y. What is the primary mover of water dynamics? Phys. Chem. Chem. Phys., 2015, 17, 15428-15434.
[57]
Popov, I.; Ben Ishai, P.; Ben Khamzin, A.; Feldman, Y. The mechanism of the dielectric relaxation in water. Phys. Chem. Chem. Phys., 2016, 18, 13941-13953.
[58]
Kurzweil-Segev, Y.; Popov, I.; Eisenberg, I.; Yochelis, S.; Keren, N.; Paltiel, Y.; Feldman, Y. Confined water dynamics in a hydrated photosynthetic pigment-protein complex. Phys. Chem. Chem. Phys., 2017, 19, 28063-28070.
[59]
Yadav, R.; Sengupta, B.; Sen, P. Effect of sucrose on chemically and thermally induced unfolding of domain-I of human serum albumin: Solvation dynamics and fluorescence anisotropy Study. Biophys. Chem., 2016, 211, 59-69.
[60]
Maroncelli, M.; Fleming, G.R. Picosecond solvation dynamics of coumarin 153: The importance of molecular aspects of solvation. J. Chem. Phys., 1987, 86, 6221-6239.
[61]
Shil, S.; Sengupta, B.; Das, N.; Sen, P. Sucrose-induced stabilization of domain-II and Overall human serum albumin against chemical and thermal denaturation. ACS Omega, 2018, 3, 16633-16642.
[62]
Fee, R.S.; Maroncelli, M. Estimating the time-zero spectrum in time- resolved emission measurements of solvation dynamics. Chem. Phys., 1994, 183, 235.
[63]
Naidu, K.T.; Prabhu, N.P. Protein-surfactant interaction: Sodium dodecyl sulfate-induced unfolding of ribonuclease A. J. Phys. Chem. B, 2011, 115, 14760-14767.