[1]
Chen, G.; Hao, B.; Ju, D.; Liu, M.; Zhao, H.; Du, Z.; Xia, J. Pharmacokinetic and pharmacodynamic study of triptolide-loaded liposome hydrogel patch under microneedles on rats with collagen-induced arthritis. Acta Pharm. Sin. B, 2015, 5(6), 569-576.
[2]
El-Nabarawi, M.A.; Bendas, E.R.; El, R.R.; Abary, M.Y. Transdermal drug delivery of paroxetine through lipid-vesicular formulation to augment its bioavailability. Int. J. Pharm., 2013, 443(1-2), 307-317.
[3]
Carbone, C.; Leonardi, A.; Cupri, S.; Puglisi, G.; Pignatello, R. Pharmaceutical and biomedical applications of lipid-based nanocarriers. Pharm. Pat. Anal., 2014, 3(2), 199-215.
[4]
Zhai, Y.; Zhai, G. Advances in lipid-based colloid systems as drug carrier for topic delivery. J. Control. Release, 2014, 193, 90-99.
[5]
Salehiabar, M.; Nosrati, H.; Javani, E.; Aliakbarzadeh, F.; Kheiri, M.H.; Davaran, S.; Danafar, H. Production of biological nanoparticles from bovine serum albumin as controlled release carrier for curcumin delivery. Int. J. Biol. Macromol., 2018, 115, 83-89.
[6]
Nosrati, H.; Sefidi, N.; Sharafi, A.; Danafar, H.; Kheiri, M.H. Bovine Serum Albumin (BSA) coated iron oxide magnetic nanoparticles as biocompatible carriers for curcumin-anticancer drug. Bioorg. Chem., 2018, 76, 501-509.
[7]
Nosrati, H.; Abbasi, R.; Charmi, J.; Rakhshbahar, A.; Aliakbarzadeh, F.; Danafar, H.; Davaran, S. Folic acid conjugated bovine serum albumin: An efficient smart and tumor targeted biomacromolecule for inhibition folate receptor positive cancer cells. Int. J. Biol. Macromol., 2018, 117, 1125-1132.
[8]
Nosrati, H.; Salehiabar, M.; Manjili, H.K.; Danafar, H.; Davaran, S. Preparation of magnetic albumin nanoparticles via a simple and one-pot desolvation and co-precipitation method for medical and pharmaceutical applications. Int. J. Biol. Macromol., 2018, 108, 909-915.
[9]
Nomani, A.; Nosrati, H.; Manjili, H.K.; Khesalpour, L.; Danafar, H. Preparation and characterization of copolymeric polymersomes for protein delivery. Drug Res. (Stuttg.), 2017, 67(8), 458-465.
[10]
Nosrati, H.; Adinehvand, R.; Manjili, H.K.; Rostamizadeh, K.; Danafar, H. Synthesis, characterization, and kinetic release study of methotrexate loaded mPEG-PCL polymersomes for inhibition of MCF-7 breast cancer cell line. Pharm. Dev. Technol., 2019, 24(1), 89-98.
[11]
Rostamizadeh, K.; Manafi, M.; Nosrati, H.; Kheiri, M.H.; Danafar, H. Methotrexate-conjugated mPEG–PCL copolymers: A novel approach for dual triggered drug delivery. New J. Chem., 2018, 42(8), 5937-5945.
[12]
Nosrati, H.; Salehiabar, M.; Davaran, S.; Danafar, H.; Manjili, H.K. Methotrexate-conjugated L-lysine coated iron oxide magnetic nanoparticles for inhibition of MCF-7 breast cancer cells. Drug Dev. Ind. Pharm., 2017, 1-9.
[13]
Nosrati, H.; Rashidi, N.; Danafar, H.; Manjili, H.K. Anticancer activity of tamoxifen loaded tyrosine decorated biocompatible Fe3O4 magnetic nanoparticles against breast cancer cell lines. J. Inorg. Organomet. Polym. Mater., 2018, 28(3), 1178-1186.
[14]
Nosrati, H.; Mojtahedi, A.; Danafar, H.; Kheiri, M.H. Enzymatic stimuli-responsive methotrexate-conjugated magnetic nanoparticles for target delivery to breast cancer cells and release study in lysosomal condition. J. Biomed. Mater. Res. Part A, 2018, 106(6), 1646-1654.
[15]
Nosrati, H.; Salehiabar, M.; Attari, E.; Davaran, S.; Danafar, H.; Manjili, H.K. Green and one-pot surface coating of iron oxide magnetic nanoparticles with natural amino acids and biocompatibility investigation. Appl. Organomet. Chem., 2018, 32(2), e4069.
[16]
Nosrati, H.; Salehiabar, M.; Kheiri, M.H.; Davaran, S.; Danafar, H. Theranostic nanoparticles based on magnetic nanoparticles: Design, preparation, characterization, and evaluation as novel anticancer drug carrier and MRI contrast agent. Drug Dev. Ind. Pharm., 2018, 44(10), 1668-1678.
[17]
Nosrati, H.; Salehiabar, M.; Attari, E.; Davaran, S.; Danafar, H.; Manjili, H.K. Green and one-pot surface coating of iron oxide magnetic nanoparticles with natural amino acids and biocompatibility investigation. Appl. Organomet. Chem., 2018, 32(2), e4069.
[18]
Salehiabar, M.; Nosrati, H.; Davaran, S.; Danafar, H.; Manjili, H. Facile synthesis and characterization of L-Aspartic acid coated iron oxide magnetic nanoparticles (IONPs) for biomedical applications. Drug Res., 2018, 68(5), 280-285.
[19]
Nosrati, H.; Adibtabar, M.; Sharafi, A.; Danafar, H.; Hamidreza, K.M. PAMAM-modified citric acid-coated magnetic nanoparticles as pH sensitive biocompatible carrier against human breast cancer cells. Drug Dev. Ind. Pharm., 2018, 44(8), 1377-1384.
[20]
Ariga, K.; Kawakami, K.; Ebara, M.; Kotsuchibashi, Y.; Ji, Q.; Hill, J.P. Bioinspired nanoarchitectonics as emerging drug delivery systems. J. Chem., 2014, 38, 5149-5163.
[21]
Huang, Y.; Wu, S.; Deng, W.; Xu, G.; Hu, F.; Hill, J.P.; Wei, W.; Su, S.; Shrestha, L.K.; Sato, O.; Wu, M.; Hong, M.; Ariga, K. Selective CO2 capture and high proton conductivity of a functional star-of-david catenane metal-organic framework. Adv. Mater., 2017, 29(42), 1703301.
[22]
Komiyama, M.; Yoshimoto, K.; Sisido, M.; Ariga, K. Chemistry can make strict and fuzzy controls for bio-systems: DNA nanoarchitectonics and cell-macromolecular nanoarchitectonics. Bull. Chem. Soc. Japan., 2017, 90(9), 967-1004.
[23]
Zhang, N.; Wu, Y.; Xing, R.; Xu, B.; Guoliang, D.; Wang, P. Effect of ultrasound-enhanced transdermal drug delivery efficiency of nanoparticles and brucine. BioMed Res. Int., 2017, 2017, 3273816.
[24]
Henry, S.; McAllister, D.V.; Allen, M.G.; Prausnitz, M.R. Microfabricated microneedles: A novel approach to transdermal drug delivery. J. Pharm. Sci., 1999, 88(9), 948.
[25]
Lin, H.; Xie, Q.; Huang, X.; Ban, J.; Wang, B.; Wei, X.; Chen, Y.; Lu, Z. Increased skin permeation efficiency of imperatorin via charged ultradeformable lipid vesicles for transdermal delivery. Int. J. Nanomedicine, 2018, 13, 831-842.
[26]
Musa, M.N.; David, S.R.; Zulkipli, I.N.; Mahadi, A.H.; Chakravarthi, S.; Rajabalaya, R. Development and evaluation of exemestane-loaded lyotropic liquid crystalline gel formulations. Bioimpacts, 2017, 7(4), 227-239.
[27]
Henry, S.; McAllister, D.V.; Allen, M.G.; Prausnitz, M.R. Microfabricated microneedles: A novel approach to transdermal drug delivery. J. Pharm. Sci., 1999, 88(9), 948.
[28]
Pamornpathomkul, B.; Niyomtham, N.; Yingyongnarongkul, B.E.; Prasitpuriprecha, C.; Rojanarata, T.; Ngawhirunpat, T.; Opanasopit, P. Cationic niosomes for enhanced skin immunization of plasmid DNA-encoding ovalbumin via hollow microneedles. AAPS PharmSciTech, 2018, 19(1), 481-488.
[29]
Verbaan, F.J.; Bal, S.M.; Dj, V.D.B.; Groenink, W.H.; Verpoorten, H.; Lüttge, R.; Bouwstra, J.A. Assembled microneedle arrays enhance the transport of compounds varying over a large range of molecular weight across human dermatomed skin. J. Control. Release, 2007, 117(2), 238-245.
[30]
Nguyen, J.; Ita, K.B.; Morra, M.J.; Popova, I.E. The influence of solid microneedles on the transdermal delivery of selected antiepileptic drugs. Pharmaceutics, 2016, 8(4), E33.
[31]
Shakya, A.K.; Lee, C.H.; Gill, H.S. Cutaneous vaccination with coated microneedles prevents development of airway allergy. J. Control. Release, 2017, 265, 75-82.
[32]
Kim, S.; Dangol, M.; Kang, G.; Lahiji, S.F.; Yang, H.; Jang, M.; Ma, Y.; Li, C.; Lee, S.G.; Kim, C.H.; Choi, Y.W.; Kim, S.J.; Ryu, J.H.; Baek, J.H.; Koh, J.; Jung, H. Enhanced transdermal delivery by combined application of dissolving microneedle patch on serum-treated skin. Mol. Pharm., 2017, 14(6), 2024-2031.
[33]
Amodwala, S.; Kumar, P.; Thakkar, H.P. Statistically optimized fast dissolving microneedle transdermal patch of meloxicam: A patient friendly approach to manage arthritis. Eur. J. Pharm. Sci., 2017, 104, 114-123.
[34]
Zhou, C.P.; Liu, Y.L.; Wang, H.L.; Zhang, P.X.; Zhang, J.L. Transdermal delivery of insulin using microneedle rollers in vivo. Int. J. Pharm., 2010, 392(1-2), 127-133.
[35]
van der Maaden, K.; Heuts, J.; Camps, M.; Pontier, M.; Terwisscha, V.S.A.; Jiskoot, W.; Ossendorp, F.; Bouwstra, J. Hollow microneedle-mediated micro-injections of a liposomal HPV E743-63 synthetic long peptide vaccine for efficient induction of cytotoxic and T-helper responses. J. Control. Release, 2018, 269, 347-354.
[36]
Kalia, Y.N.; Naik, A.; Garrison, J.; Guy, R.H. Iontophoretic drug delivery. Adv. Drug Deliv. Rev., 2004, 56(5), 619-658.
[37]
Manabe, E.; Numajiri, S.; Sugibayashi, K.; Morimoto, Y. Analysis of skin permeation-enhancing mechanism of iontophoresis using hydrodynamic pore theory. J. Control. Release, 2000, 66(2-3), 149-158.
[38]
Kalia, Y.N.; Naik, A.; Garrison, J.; Guy, R.H. Iontophoretic drug delivery. Adv. Drug Deliv. Rev., 2004, 56(5), 619-658.
[39]
Jadoul, A.; Bouwstra, J.; Preat, V.V. Effects of iontophoresis and electroporation on the stratum corneum. Review of the biophysical studies. Adv. Drug Deliv. Rev., 1999, 35(1), 89-105.
[40]
Manabe, E.; Numajiri, S.; Sugibayashi, K.; Morimoto, Y. Analysis of skin permeation-enhancing mechanism of iontophoresis using hydrodynamic pore theory. J. Control. Release, 2000, 66(2-3), 149-158.
[41]
Lemos, C.N.; de Souza, J.G.; Simao, P.S.; Lopez, R.F. Iontophoresis improved growth reduction of invasive squamous cell carcinoma in topical photodynamic therapy. PLoS One, 2016, 11(1), e145922.
[42]
Krishnan, G.; Roberts, M.S.; Grice, J.; Anissimov, Y.G.; Moghimi, H.R.; Benson, H.A. Iontophoretic skin permeation of peptides: An investigation into the influence of molecular properties, iontophoretic conditions and formulation parameters. Drug Deliv. Transl. Res., 2014, 4(3), 222-232.
[43]
Kalaria, D.R.; Singhal, M.; Patravale, V.; Merino, V.; Kalia, Y.N. Simultaneous controlled iontophoretic delivery of pramipexole and rasagiline in vitro and in vivo: Transdermal polypharmacy to treat Parkinson’s disease. Eur. J. Pharm. Biopharm., 2018, 127, 204-212.
[44]
Chen, F.; Wang, H.; Hou, H.M. Applications of electroporation in transdermal drug delivery. Chin. J. Pharm., 2004, 35(3), 174-179.
[45]
Charoo, N.A.; Rahman, Z.; Repka, M.A.; Murthy, S.N. Electroporation: an avenue for transdermal drug delivery. Curr. Drug Deliv., 2010, 7(2), 125-136.
[46]
Dubey, S.; Kalia, Y.N. Electrically-assisted delivery of an anionic protein across intact skin: Cathodal iontophoresis of biologically active ribonuclease T1. J. Control. Release, 2011, 152(3), 356-362.
[47]
Komuro, M.; Suzuki, K.; Kanebako, M.; Kawahara, T.; Otoi, T.; Kitazato, K.; Inagi, T.; Makino, K.; Toi, M.; Terada, H. Novel iontophoretic administration method for local therapy of breast cancer. J. Control. Release, 2013, 168(3), 298-306.
[48]
Saluja, S.; Kasha, P.C.; Paturi, J.; Anderson, C.; Morris, R.; Banga, A.K. A novel electronic skin patch for delivery and pharmacokinetic evaluation of donepezil following transdermal iontophoresis. Int. J. Pharm., 2013, 453(2), 395-399.
[49]
Djabri, A.; Guy, R.H.; Delgado-Charro, M.B. Transdermal iontophoresis of ranitidine: An opportunity in paediatric drug therapy. Int. J. Pharm., 2012, 435(1), 27-32.
[50]
Gurumurthy, C.B.; Takahashi, G.; Wada, K.; Miura, H.; Sato, M.; Ohtsuka, M. GONAD: A novel CRISPR/Cas9 genome editing method that does not require ex vivo handling of embryos. Curr. Protoc. Hum. Genet., 2016, 88, 15-18.
[51]
Djabri, A.; Guy, R.H.; Delgado-Charro, M.B. Transdermal iontophoresis of ranitidine: An opportunity in paediatric drug therapy. Int. J. Pharm., 2012, 435(1), 27-32.
[52]
Dubey, S.; Kalia, Y.N. Electrically-assisted delivery of an anionic protein across intact skin: Cathodal iontophoresis of biologically active ribonuclease T1. J. Control. Release, 2011, 152(3), 356-362.
[53]
Iqbal, B.; Ali, J.; Baboota, S. Recent advances and development in epidermal and dermal drug deposition enhancement technology. Int. J. Dermatol., 2018, 57(6), 646-660.
[54]
Qingfu, W.; Yufeng, M.; Yueshan, Y.; Huimin, Y.; Yan, S.; Qingxue, Q.; Haoyun, Z.; Chuilin, D.U.; Hu, H.; Zongting, S.; Yinze, Q.; Lei, Z.; Jun, Z.; Lili, Y.; Song, L. Influence of low-frequency ultrasound for enhancing permeation of chinese medicinal on cytokines in rabbits with knee osteoarthritis. J. Beijing Uni. Tradit. Chin. Med., 2013, 36(2), 108-112.
[55]
Schoellhammer, C.M.; Blankschtein, D.; Langer, R. Skin permeabilization for transdermal drug delivery: Recent advances and future prospects. Expert Opin. Drug Deliv., 2014, 11(3), 393-407.
[56]
Boucaud, A.; Machet, L.; Arbeille, B.; Machet, M.C.; Sournac, M.; Mavon, A.; Patat, F.; Vaillant, L. In vitro study of low-frequency ultrasound-enhanced transdermal transport of fentanyl and caffeine across human and hairless rat skin. Int. J. Pharm., 2001, 228(1-2), 69-77.
[57]
Schoellhammer, C.M.; Blankschtein, D.; Langer, R. Skin permeabilization for transdermal drug delivery: Recent advances and future prospects. Expert Opin. Drug Deliv., 2014, 11(3), 393-407.
[58]
Shuwaili, A.H.A.L.; Rasool, B.K.; Abdulrasool, A.A. Optimization of elastic transfersomes formulations for transdermal delivery of pentoxifylline. Eur. J. Pharm. Biopharm., 2016, 102, 101-114.
[59]
Mahmood, S.; Mandal, U.K.; Chatterjee, B. Transdermal delivery of raloxifene HCl via ethosomal system: Formulation, advanced characterizations and pharmacokinetic evaluation. Int. J. Pharm., 2018, 542(1-2), 36-46.
[60]
Millart, E.; Lesieur, S.; Faivre, V. Superparamagnetic lipid-based hybrid nanosystems for drug delivery. Expert Opin. Drug Deliv., 2018, 15(5), 523-540.
[61]
Yang, M.; Gu, Y.; Yang, D.; Tang, X.; Liu, J. Development of triptolide-nanoemulsion gels for percutaneous administration: physicochemical, transport, pharmacokinetic and pharmacodynamic characteristics. J. Nanobiotechnology, 2017, 15(1), 88.
[62]
Rai, V.K.; Mishra, N.; Yadav, K.S.; Yadav, N.P. Nanoemulsion as pharmaceutical carrier for dermal and transdermal drug delivery: Formulation development, stability issues, basic considerations and applications. J. Control. Release, 2018, 270, 203-225.
[63]
Qi, J.; Lu, Y.; Wu, W. Absorption, disposition and pharmacokinetics of solid lipid nanoparticles. Curr. Drug Metab., 2012, 13(4), 418-428.
[64]
Guo, T.; Zhang, Y.; Zhao, J.; Zhu, C.; Feng, N. Nanostructured lipid carriers for percutaneous administration of alkaloids isolated from Aconitum sinomontanum. J. Nanobiotechnology, 2015, 13, 47.
[65]
Barenholz, Y.C.; Peer, D. Liposomes, lipid biophysics, and sphingolipid research: From basic to translation research. Chem. Phys. Lipids, 2012, 165(4), 363-364.
[66]
Gabizon, A.; Papahadjopoulos, D. Liposome formulations with prolonged circulation time in blood and enhanced uptake by tumors. Proc. Natl. Acad. Sci. USA, 1988, 85(18), 6949-6953.
[67]
Ngan, C.L.; Basri, M.; Lye, F.F.; Fard, M.H.; Tripathy, M.; Karjiban, R.A.; Abdul-Malek, E. Comparison of process parameter optimization using different designs in nanoemulsion-based formulation for transdermal delivery of fullerene. Int. J. Nanomedicine, 2014, 9, 4375-4386.
[68]
Zylberberg, C.; Matosevic, S. Pharmaceutical liposomal drug delivery: A review of new delivery systems and a look at the regulatory landscape. Drug Deliv., 2016, 23(9), 3319-3329.
[69]
Tang, J.; Zhang, L.; Fu, H.; Kuang, Q.; Gao, H.; Zhang, Z.; He, Q. A detachable coating of cholesterol-anchored PEG improves tumor targeting of cell-penetrating peptide-modified liposomes. Acta Pharm. Sin. B, 2014, 4(1), 67-73.
[70]
Dai, M.; Wu, C.; Fang, H.M.; Li, L.; Yan, J.B.; Zeng, D.L.; Zhu, T. Thermo-responsive magnetic liposomes for hyperthermia-triggered local drug delivery. J. Microencapsul., 2017, 34(4), 408-415.
[71]
Needham, D.; Park, J.Y.; Wright, A.M.; Tong, J. Materials characterization of the low temperature sensitive liposome (LTSL): Effects of the lipid composition (lysolipid and DSPE-PEG2000) on the thermal transition and release of doxorubicin. Faraday Discuss., 2013, 161, 515-534, 563-589.
[72]
Wen, M.M.; Farid, R.M.; Kassem, A.A. Nano-proniosomes enhancing the transdermal delivery of mefenamic acid. J. Liposome Res., 2014, 24(4), 280-289.
[73]
Wang, J.; Wei, Y.; Fei, Y.R.; Fang, L.; Zheng, H.S.; Mu, C.F.; Li, F.Z.; Zhang, Y.S. Preparation of mixed monoterpenes edge activated PEGylated transfersomes to improve the in vivo transdermal delivery efficiency of sinomenine hydrochloride. Int. J. Pharm., 2017, 533(1), 266-274.
[74]
Ha, D.; Yang, N.; Nadithe, V. Exosomes as therapeutic drug carriers and delivery vehicles across biological membranes: Current perspectives and future challenges. Acta Pharm. Sin. B, 2016, 6(4), 287-296.
[75]
Touitou, E.; Dayan, N.; Bergelson, L.; Godin, B.; Eliaz, M. Ethosomes - novel vesicular carriers for enhanced delivery: Characterization and skin penetration properties. J. Control. Release, 2000, 65(3), 403-418.
[76]
Yang, L.; Wu, L.; Wu, D.; Shi, D.; Wang, T.; Zhu, X. Mechanism of transdermal permeation promotion of lipophilic drugs by ethosomes. Int. J. Nanomedicine, 2017, 12, 3357-3364.
[77]
Bhosale, S.S.; Avachat, A.M. Design and development of ethosomal transdermal drug delivery system of valsartan with preclinical assessment in Wistar albino rats. J. Liposome Res., 2013, 23(2), 119-125.
[78]
Ali, A.; Ansari, V.A.; Ahmad, U.; Akhtar, J.; Jahan, A. Nanoemulsion: An advanced vehicle for efficient drug delivery. Drug Res. (Stuttg.), 2017, 67(11), 617-631.
[79]
Azeem, A.; Talegaonkar, S.; Negi, L.M.; Ahmad, F.J.; Khar, R.K.; Iqbal, Z. Oil based nanocarrier system for transdermal delivery of ropinirole: A mechanistic, pharmacokinetic and biochemical investigation. Int. J. Pharm., 2012, 422(1), 436-444.
[80]
Shin, K.; Gong, G.; Cuadrado, J.; Jeon, S.; Seo, M.; Choi, H.S.; Hwang, J.S.; Lee, Y.; Fernandez-Nieves, A.; Kim, J.W. Structurally stable attractive nanoscale emulsions with dipole-dipole interaction-driven interdrop percolation. Chemistry, 2017, 23(18), 4292-4297.
[81]
Khurana, S.; Bedi, P.M.; Jain, N.K. Preparation and evaluation of solid lipid nanoparticles based nanogel for dermal delivery of meloxicam. Chem. Phys. Lipids, 2013, 175-176, 65-72.
[82]
Goto, P.L.; Siqueira-Moura, M.P.; Tedesco, A.C. Application of aluminum chloride phthalocyanine-loaded solid lipid nanoparticles for photodynamic inactivation of melanoma cells. Int. J. Pharm., 2017, 518(1-2), 228-241.
[83]
Peng, L.H.; Wei, W.; Shan, Y.H.; Chong, Y.S.; Yu, L.; Gao, J.Q. Sustained release of piroxicam from solid lipid nanoparticle as an effective anti-inflammatory therapeutics in vivo. Drug Dev. Ind. Pharm., 2017, 43(1), 55-66.
[84]
Iqbal, N.; Vitorino, C.; Taylor, K.M. How can lipid nanocarriers improve transdermal delivery of olanzapine? Pharm. Dev. Technol., 2017, 22(4), 587-596.
[85]
Pardeike, J.; Hommoss, A.; Muller, R.H. Lipid nanoparticles (SLN, NLC) in cosmetic and pharmaceutical dermal products. Int. J. Pharm., 2009, 366(1-2), 170-184.
[86]
Raza, K.; Shareef, M.A.; Singal, P.; Sharma, G.; Negi, P.; Katare, O.P. Lipid-based capsaicin-loaded nano-colloidal biocompatible topical carriers with enhanced analgesic potential and decreased dermal irritation. J. Liposome Res., 2014, 24(4), 290-296.
[87]
Schwarz, J.C.; Baisaeng, N.; Hoppel, M.; Low, M.; Keck, C.M.; Valenta, C. Ultra-small NLC for improved dermal delivery of coenyzme Q10. Int. J. Pharm., 2013, 447(1-2), 213-217.
[88]
Bhaskar, K.; Krishna, M.C.; Lingam, M.; Prabhakar, R.V.; Venkateswarlu, V.; Madhusudan, R.Y. Development of nitrendipine controlled release formulations based on SLN and NLC for topical delivery: In vitro and ex vivo characterization. Drug Dev. Ind. Pharm., 2008, 34(7), 719-725.
[89]
Chen, G.; Hao, B.; Ju, D.; Liu, M.; Zhao, H.; Du, Z.; Xia, J. Pharmacokinetic and pharmacodynamic study of triptolide-loaded liposome hydrogel patch under microneedles on rats with collagen-induced arthritis. Acta Pharm. Sin. B, 2015, 5(6), 569-576.
[90]
Andar, A.U.; Karan, R.; Pecher, W.T.; DasSarma, P.; Hedrich, W.D.; Stinchcomb, A.L.; DasSarma, S. Microneedle-assisted skin permeation by nontoxic bioengineerable gas vesicle nanoparticles. Mol. Pharm., 2017, 14(3), 953-958.
[91]
Kumar, A.; Li, X.; Sandoval, M.A.; Rodriguez, B.L.; Sloat, B.R.; Cui, Z. Permeation of antigen protein-conjugated nanoparticles and live bacteria through microneedle-treated mouse skin. Int. J. Nanomedicine, 2011, 6, 1253-1264.
[92]
Seok, H.; Noh, J.Y.; Lee, D.Y.; Kim, S.J.; Song, C.S.; Kim, Y.C. Effective humoral immune response from a H1N1 DNA vaccine delivered to the skin by microneedles coated with PLGA-based cationic nanoparticles. J. Control. Release, 2017, 265, 66-74.
[93]
Vucen, S.R.; Vuleta, G.; Crean, A.M.; Moore, A.C.; Ignjatovic, N.; Uskokovic, D. Improved percutaneous delivery of ketoprofen using combined application of nanocarriers and silicon microneedles. J. Pharm. Pharmacol., 2013, 65(10), 1451-1462.
[94]
Gomaa, Y.A.; Garland, M.J.; McInnes, F.J.; Donnelly, R.F.; El-Khordagui, L.K.; Wilson, C.G. Microneedle/nanoencapsulation-mediated transdermal delivery: Mechanistic insights. Eur. J. Pharm. Biopharm., 2014, 86(2), 145-155.
[95]
Yan, L.; Raphael, A.P.; Zhu, X.; Wang, B.; Chen, W.; Tang, T.; Deng, Y.; Sant, H.J.; Zhu, G.; Choy, K.W.; Gale, B.K.; Prow, T.W.; Chen, X. Nanocomposite-strengthened dissolving microneedles for improved transdermal delivery to human skin. Adv. Healthc. Mater., 2014, 3(4), 555-564.
[96]
Bernardi, D.S.; Bitencourt, C.; Da, S.D.; Da, C.E.; Pereira-da-Silva, M.A.; Faccioli, L.H.; Lopez, R.F. Effective transcutaneous immunization using a combination of iontophoresis and nanoparticles. Nanomedicine, 2016, 12(8), 2439-2448.
[97]
Kigasawa, K.; Miyashita, M.; Kajimoto, K.; Kanamura, K.; Harashima, H.; Kogure, K. Efficient intradermal delivery of superoxide dismutase using a combination of liposomes and iontophoresis for protection against UV-induced skin damage. Biol. Pharm. Bull., 2012, 35(5), 781-785.
[98]
Toyoda, M.; Hama, S.; Ikeda, Y.; Nagasaki, Y.; Kogure, K. Anti-cancer vaccination by transdermal delivery of antigen peptide-loaded nanogels via iontophoresis. Int. J. Pharm., 2015, 483(1-2), 110-114.
[99]
Charoenputtakun, P.; Li, S.K.; Ngawhirunpat, T. Iontophoretic delivery of lipophilic and hydrophilic drugs from lipid nanoparticles across human skin. Int. J. Pharm., 2015, 495(1), 318-328.
[100]
Takeuchi, I.; Fukuda, K.; Kobayashi, S.; Makino, K. Transdermal delivery of estradiol-loaded PLGA nanoparticles using iontophoresis for treatment of osteoporosis. Biomed. Mater. Eng., 2016, 27(5), 475-483.
[101]
Huber, L.A.; Pereira, T.A.; Ramos, D.N.; Rezende, L.C.; Emery, F.S.; Sobral, L.M.; Leopoldino, A.M.; Lopez, R.F. Topical skin cancer therapy using doxorubicin-loaded cationic lipid nanoparticles and lontophoresis. J. Biomed. Nanotechnol., 2015, 11(11), 1975-1988.
[102]
Atanasova, S.; Nikolova, B.; Murayama, S.; Stoyanova, E.; Tsoneva, I.; Zhelev, Z.; Aoki, I.; Bakalova, R. Electroinduced delivery of hydrogel nanoparticles in colon 26 cells, visualized by confocal fluorescence system. Anticancer Res., 2016, 36(9), 4601-4606.
[103]
Balazs, B.; Sipos, P.; Danciu, C.; Avram, S.; Soica, C.; Dehelean, C.; Varju, G.; Eros, G.; Budai-Szucs, M.; Berko, S.; Csanyi, E. ATR-FTIR and Raman spectroscopic investigation of the electroporation-mediated transdermal delivery of a nanocarrier system containing an antitumour drug. Biomed. Opt. Express, 2016, 7(1), 67-78.
[104]
Rastogi, R.; Anand, S.; Koul, V. Electroporation of polymeric nanoparticles: An alternative technique for transdermal delivery of insulin. Drug Dev. Ind. Pharm., 2010, 36(11), 1303-1311.
[105]
Rangsimawong, W.; Opanasopit, P.; Rojanarata, T.; Ngawhirunpat, T. Mechanistic study of decreased skin penetration using a combination of sonophoresis with sodium fluorescein-loaded PEGylated liposomes with d-limonene. Int. J. Nanomedicine, 2015, 10, 7413-7423.
[106]
Rangsimawong, W.; Opanasopit, P.; Rojanarata, T.; Panomsuk, S.; Ngawhirunpat, T. Influence of sonophoresis on transdermal drug delivery of hydrophilic compound-loaded lipid nanocarriers. Pharm. Dev. Technol., 2017, 22(4), 597-605.
[107]
Zhai, Y.; Zhai, G. Advances in lipid-based colloid systems as drug carrier for topic delivery. J. Control. Release, 2014, 193, 90-99.
[108]
Gungor, S.; Rezigue, M. Nanocarriers mediated topical drug delivery for psoriasis treatment. Curr. Drug Metab., 2017, 18(5), 454-468.
[109]
Sala, M.; Diab, R.; Elaissari, A.; Fessi, H. Lipid nanocarriers as skin drug delivery systems: Properties, mechanisms of skin interactions and medical applications. Int. J. Pharm., 2018, 535(1-2), 1-17.