[1]
Ensafi AA, Karimi-Maleh H. Modified multiwall carbon nanotubes paste electrode as a sensor for simultaneous determination of 6-thioguanine and folic acid using ferrocenedicarboxylic acid as a mediator. J Electroanal Chem 2010; 640: 75-83.
[2]
Krasteva N, Besnard I, Guse B, et al. Self-assembled gold nanoparticle/dendrimer composite films for vapor sensing applications. Nano Lett 2002; 2: 551-5.
[3]
Prow T, Smith JN, Grebe R, et al. Construction, gene delivery, and expression of DNA tethered nanoparticles. Mol Vis 2006; 12: 606-15.
[4]
Abdel-Halim E, El-Rafie M, Al-Deyab SS. Polyacrylamide/guar gum graft copolymer for preparation of silver nanoparticles. Carbohydr Polym 2011; 85: 692-7.
[5]
Malinsky MD, Kelly KL, Schatz GC, Van Duyne RP. Chain length dependence and sensing capabilities of the localized surface plasmon resonance of silver nanoparticles chemically modified with alkanethiol self-assembled monolayers. J Am Chem Soc 2001; 123: 1471-82.
[6]
Sherry LJ, Chang S-H, Schatz GC, Van Duyne RP, Wiley BJ, Xia Y. Localized surface plasmon resonance spectroscopy of single silver nanocubes. Nano Lett 2005; 5: 2034-8.
[7]
Dubas ST, Pimpan V. Green synthesis of silver nanoparticles for ammonia sensing. Talanta 2008; 76: 29-33.
[8]
Guo H, Tao S. Silver nanoparticles doped silica nanocomposites coated on an optical fiber for ammonia sensing. Sens Actuators B 2007; 123: 578-82.
[9]
Pandey S, Goswami GK, Nanda KK. Green synthesis of biopolymer–silver nanoparticle nanocomposite: an optical sensor for ammonia detection. Int J Biol Macromol 2012; 51: 583-9.
[10]
Tran QT, Hoa HTM, Yoo D-H, et al. Reduced graphene oxide as an over-coating layer on silver nanostructures for detecting nh 3 gas at room temperature. Sens Actuators B 2014; 194: 45-50.
[11]
Otamiri M, Nilsson KG. Analysis of human serum antibody–carbohydrate interaction using biosensor based on surface plasmon resonance. Int J Biol Macromol 1999; 26: 263-8.
[12]
Hua L, Chen J, Ge L, Tan SN. Silver nanoparticles as matrix for laser desorption/ionization mass spectrometry of peptides. J Nanopart Res 2007; 9: 1133-8.
[13]
Xiong D, Chen M, Li H. Synthesis of para-sulfonatocalix [4] arene-modified silver nanoparticles as colorimetric histidine probes. Chem Commun 2008; 7: 880-2.
[14]
Jiang Z, Chen Y, Liang A, Tao H, Tang N, Zhong F. Silver nanoparticle labeled immunoresonance scattering spectral assay for trace fibrinogen. Sci China Ser B: Chem 2007; 50: 345-50.
[15]
Xu X-HN, Brownlow WJ, Kyriacou SV, Wan Q, Viola JJ. Real-time probing of membrane transport in living microbial cells using single nanoparticle optics and living cell imaging. Biochem 2004; 43: 10400-13.
[16]
Huo S-J, Xue X-K, Li Q-X, Xu S-F, Cai W-B. Seeded-growth approach to fabrication of silver nanoparticle films on silicon for electrochemical atr surface-enhanced ir absorption spectroscopy. J Phys Chem B 2006; 110: 25721-8.
[17]
Wiley BJ, Chen Y, McLellan JM, et al. Synthesis and optical properties of silver nanobars and nanorice. Nano Lett 2007; 7: 1032-6.
[18]
Dubas ST, Pimpan V. Humic acid assisted synthesis of silver nanoparticles and its application to herbicide detection. Mater Lett 2008; 62: 2661-3.
[19]
Mishra Y, Mohapatra S, Kabiraj D, et al. Synthesis and characterization of ag nanoparticles in silica matrix by atom beam sputtering. Scr Mater 2007; 56: 629-32.
[20]
Sharma VK, Yngard RA, Lin Y. Silver nanoparticles: green synthesis and their antimicrobial activities. Adv Colloid Interface Sci 2009; 145: 83-96.
[21]
Luo C, Zhang Y, Zeng X, Zeng Y, Wang Y. The role of poly (ethylene glycol) in the formation of silver nanoparticles. J Colloid Interface Sci 2005; 288: 444-8.
[22]
Zheng M, Gu M, Jin Y, Jin G. Optical properties of silver-dispersed pvp thin film. Mater Res Bull 2001; 36: 853-9.
[23]
Zhang Z, Zhang L, Wang S, Chen W, Lei Y. A convenient route to polyacrylonitrile/silver nanoparticle composite by simultaneous polymerization–reduction approach. Polym 2001; 42: 8315-8.
[24]
Singh N, Khanna P. In situ synthesis of silver nano-particles in polymethylmethacrylate. Mater Chem Phys 2007; 104: 367-72.
[25]
Khanna P, Singh N, Charan S, Viswanath AK. Synthesis of ag/polyaniline nanocomposite via an in situ photo-redox mechanism. Mater Chem Phys 2005; 92: 214-9.
[26]
Zhou Y, Yu SH, Wang CY, Li XG, Zhu YR, Chen ZY. A novel ultraviolet irradiation photoreduction technique for the preparation of single‐crystal ag nanorods and ag dendrites. Adv Mater 1999; 11: 850-2.
[27]
Joseph S, Mathew B. Microwave-assisted facile synthesis of silver nanoparticles in aqueous medium and investigation of their catalytic and antibacterial activities. J Mol Liq 2014; 197: 346-52.
[28]
Bakar NA, Ismail J, Bakar MA. Synthesis and characterization of silver nanoparticles in natural rubber. Mater Chem Phys 2007; 104: 276-83.
[29]
Huang H, Yang X. Synthesis of polysaccharide-stabilized gold and silver nanoparticles: A green method. Carbohydr Res 2004; 339: 2627-31.
[30]
Cai J, Kimura S, Wada M, Kuga S. Nanoporous cellulose as metal nanoparticles support. Biomacromolecules 2008; 10: 87-94.
[31]
Kemp MM, Kumar A, Mousa S, et al. Gold and silver nanoparticles conjugated with heparin derivative possess anti-angiogenesis properties. Nanotech 2009; 20455104
[32]
Mohan YM, Joseph D, Geckeler K. Poly (n‐isopropylacrylamide‐co‐sodium acrylate) hydrogels: Interactions with surfactants. J Appl Polym Sci 2007; 103: 3423-30.
[33]
Kora AJ, Sashidhar R, Arunachalam J. Gum kondagogu (cochlospermum gossypium): A template for the green synthesis and stabilization of silver nanoparticles with antibacterial application. Carbohydr Polym 2010; 82: 670-9.
[34]
Gils PS, Ray D, Sahoo PK. Designing of silver nanoparticles in gum arabic based semi-ipn hydrogel. Int J Biol Macromol 2010; 46: 237-44.
[35]
Raveendran P, Fu J, Wallen SL. Completely “green” synthesis and stabilization of metal nanoparticles. J Am Chem Soc 2003; 125: 13940-1.
[36]
Ravindran A, Mani V, Chandrasekaran N, Mukherjee A. Selective colorimetric sensing of cysteine in aqueous solutions using silver nanoparticles in the presence of cr 3+. Talanta 2011; 85: 533-40.
[37]
Su H, Fan H, Ai S, et al. Selective determination of melamine in milk samples using 3-mercapto-1-propanesulfonate-modified gold nanoparticles as colorimetric probe. Talanta 2011; 85: 1338-43.
[38]
Wang G-L, Zhu X-Y, Jiao H-J, Dong Y-M, Li Z-J. Ultrasensitive and dual functional colorimetric sensors for mercury (ii) ions and hydrogen peroxide based on catalytic reduction property of silver nanoparticles. Biosens Bioelectron 2012; 31: 337-42.
[39]
Wang L, Liu X, Hu X, Song S, Fan C. Unmodified gold nanoparticles as a colorimetric probe for potassium DNA aptamers. Chem Commun 2006; 36: 3780-2.
[40]
Lee J-S, Lytton-Jean AK, Hurst SJ, Mirkin CA. Silver nanoparticle-oligonucleotide conjugates based on DNA with triple cyclic disulfide moieties. Nano Lett 2007; 7: 2112-5.
[41]
Warneck P. Chemistry of the natural atmosphere. 2nd ed. San Diego: Academic Press 1999.
[42]
Durbin TD, Wilson RD, Norbeck JM, Miller JW, Huai T, Rhee SH. Estimates of the emission rates of ammonia from light-duty vehicles using standard chassis dynamometer test cycles. Atmos Environ 2002; 36: 1475-82.
[43]
Pijolat C, Pupier C, Sauvan M, Tournier G, Lalauze R. Gas detection for automotive pollution control. Sens Actuators B 1999; 59: 195-202.
[44]
Ament W, Huizenga J, Kort E, Van Der Mark T, Grevink R, Verkerke G. Respiratory ammonia output and blood ammonia concentration during incremental exercise. Int J Sports Med 1999; 20: 71-7.
[45]
Narasimhan L, Goodman W, Patel CKN. Correlation of breath ammonia with blood urea nitrogen and creatinine during hemodialysis. Proc Natl Acad Sci 2001; 98: 4617-21.
[46]
Eiceman GA, Salazar MR, Rodriguez MR, et al. Ion mobility spectrometry of hydrazine, monomethylhydrazine, and ammonia in air with 5-nonanone reagent gas. Anal Chem 1993; 65: 1696-702.
[47]
Lähdesmäki I, Lewenstam A, Ivaska A. A polypyrrole-based amperometric ammonia sensor. Talanta 1996; 43: 125-34.
[48]
Li RC, Chan PC, Cheung PW. Analysis of a mos integrated gas sensor using a surface chemistry based model. Sens Actuators B 1995; 28: 233-42.
[49]
Jin Z, Su Y, Duan Y. An improved optical ph sensor based on polyaniline. Sens Actuators B 2000; 71118-22.
[50]
Onida B, Fiorilli S, Borello L, Viscardi G, Macquarrie D, Garrone E. Mechanism of the optical response of mesoporous silica impregnated with reichardt’s dye to nh3 and other gases. The J Phys Chem B 2004; 108: 16617-20.
[51]
Webber ME, Baer DS, Hanson RK. Ammonia monitoring near 1.5 µm with diode-laser absorption sensors. Appl Opt 2001; 40: 2031-42.
[52]
Mader HS, Wolfbeis OS. Optical ammonia sensor based on upconverting luminescent nanoparticles. Anal Chem 2010; 82: 5002-4.
[53]
Abaker M, Umar A, Baskoutas S, et al. A highly sensitive ammonia chemical sensor based on α-fe2o3 nanoellipsoids. J Phys D Appl Phys 2011; 44425401
[54]
Duncan TV. Applications of nanotechnology in food packaging and food safety: barrier materials, antimicrobials and sensors. J Colloid Interface Sci 2011; 363: 1-24.
[55]
Rahman MM, Jamal A, Khan SB, Faisal M. Characterization and applications of as-grown β-fe2o3 nanoparticles prepared by hydrothermal method. J Nanopart Res 2011; 13: 3789-99.
[56]
Vogel AI, Svehla G. Vogel’s qualitative inorganic analysis. Harlow: Longman 1996.
[57]
Martin JD, Telgmann L, Metcalfe CD. A method for preparing silver nanoparticle suspensions in bulk for ecotoxicity testing and ecological risk assessment. Bull Environ Contam Toxicol 2017; 98: 589-94.
[58]
Khalid Mustafa Osman O, Manal Ahmed GA, Awatif AH, Abeer Ramadan MA, Ahmed Sameer AH, Abdulhakeem AA. Synthesis of silver nanoparticles using
fungi. US9701552B1 2017.
[59]
Manal Ahmed GA, Ebtesam MA, Sarah Saleh AA, Muzzammil IS, Manal FE. Synthesis of metal
nanoparticles using an extract of terfeziacea.
US9637807B1. 2016.
[60]
Slistan-Grijalva A, Herrera-Urbina R, Rivas-Silva J, Avalos-Borja M, Castillón-Barraza F, Posada-Amarillas A. Synthesis of silver nanoparticles in a polyvinylpyrrolidone (pvp) paste, and their optical properties in a film and in ethylene glycol. Mater Res Bull 2008; 43: 90-6.
[61]
Bin Ahmad M, Lim JJ, Shameli K, Ibrahim NA, Tay MY. Synthesis of silver nanoparticles in chitosan, gelatin and chitosan/gelatin bionanocomposites by a chemical reducing agent and their characterization. Molecules 2011; 16: 7237-48.
[62]
Solomon MM, Gerengi H, Umoren SA, Essien NB, Essien UB, Kaya E. Gum arabic-silver nanoparticles composite as a green anticorrosive formulation for steel corrosion in strong acid media. Carbohydr Polym 2018; 181: 43-55.
[63]
Williams PA, Phillips GO. GUMS | Properties of Individual
Gums In: Caballero B, Eds Encyclopedia of
food sciences and nutrition Oxford: Academic Press. 2003; p. pp. 2992-3001.
[64]
Elemike EE, Onwudiwe DC, Arijeh O, Nwankwo HU. Plant-mediated biosynthesis of silver nanoparticles by leaf extracts of Lasienthra africanum and a study of the influence of kinetic parameters. Bull Mater Sci 2017; 40(1): 129-37.
[65]
Mohan YM, Raju KM, Sambasivudu K, Singh S, Sreedhar B. Preparation of acacia‐stabilized silver nanoparticles: A green approach. J Appl Polym Sci 2007; 106(5): 3375-81.
[66]
Amirmostafa A. Davoudi. Colorimetric detection of ammonia using smartphones based on localized surface plasmon resonance of silver nanoparticles. Talanta 2018; 176: 242-6.
[67]
Carley A, Gwin ABC, Emilie L, Christina LA, Claudia KG. Microbial community response to silver nanoparticles and Ag+ in nitrifying activated sludge revealed by ion semiconductor sequencing. Sci Total Environ 2018; 616-617: 1014-21.
[68]
Kumar A, Aerry S, Goia DV. Preparation of concentrated stable dispersions of uniform Ag nanoparticles using resorcinol as reductant. J Colloid Interface Sci 2016; 470: 196-203.
[69]
Jonathan DM, Lena T, Chris DM. A method for preparing silver nanoparticle suspensions in bulk for ecotoxicity testing and ecological risk assessment. Bull Environ Contam Toxicol 2017; 98(5): 589-94.
[70]
Carley AG, Emilie L, Christina LA, Claudia KG. Microbial community response to silver nanoparticles and Ag+ in nitrifying activated sludge revealed by ion semiconductor sequencing. Sci Total Environ 2018; 616-617: 1014-21.
[71]
Solomon MM, Gerengi H, Umoren SA, Essien NB, Essien UB, Kaya E. Gum Arabic-silver nanoparticles composite as a green anticorrosive formulation for steel corrosion in strong acid media. Carbohydr Polym 2018; 181: 43-55.
[72]
Lodeiro P, Achterberg EP, Rey-Castro C, El-Shahawi MS. Effect of polymer coating composition on the aggregation rates of Ag nanoparticles in NaCl solutions and seawaters. Sci Total Environ 2018; 631-632: 1153-62.
[73]
Barsotti RJ. Measurement of ammonia in blood. J Pediatr 2001; 138: S11.
[74]
Chernecky CC, Berger BJ. Laboratory tests and diagnostic procedures. 6th ed. St Louis, MO 2013.
[75]
Ge L, Li Q, Wang M, Ouyang J, Li X, Xing MM. Nanosilver particles in medical applications: synthesis, performance, and toxicity. Int J Nanomedicine 2014; 9: 2399.
[76]
Jiang J, Oberdörster G, Biswas P. Characterization of size, surface charge, and agglomeration state of nanoparticle dispersions for toxicological studies. J Nanopart Res 2009; 11(1): 77-89.
[77]
Zhang Y, Li Y, Wei Q, Yan T, Du B, Hu L. A method of preparing ammonia gas sensor based on a noble metal compound in the construction. CN104502415B 2015.
[78]
Ankamwar B, Mandal G, Sur UK, Ganguly T. An effective biogenic protocol for room temperature one step synthesis of defective nanocrystalline silver nanobuns using leaf extract. Digest J Nano Biostruc 2012; 7: 599-605.