[1]
Maltby, L.; Brock, T.C.M.; van den Brink, P.J. Fungicide risk assessment for aquatic ecosystems: importance of interspecific variation, toxic mode of action, and exposure regime. Environ. Sci. Technol., 2009, 43, 7556-7563.
[2]
Waard, M.A.; Georgopoulos, S.G.; Hollomon, D.W.; Ishii, H.; Leroux, P.; Ragsdale, N.N.; Schwinn, F.J. Chemical control of plant diseases: Problems and prospects. Annu. Rev. Phytopathol., 1993, 31, 403-421.
[3]
Igbedioh, S.O. Effects of agricultural pesticides on humans, animals, and higher plants in developing countries. Arch. Environ. Health: . An Int. J., 1991, 46, 218-224.
[4]
Badawy, M.E.I.; Rabea, E.I. Synthesis and structure–activity relationship of N-(cinnamyl) chitosan analogs as antimicrobial agents. Int. J. Biol. Macromol., 2013, 57, 185-192.
[5]
Jacometti, M.A.; Wratten, S.D.; Walter, M. Review: alternatives to synthetic fungicides for Botrytis cinerea management in vineyards. Aust. J. Grape Wine Res., 2010, 16, 154-172.
[6]
Rabea, E.I.; Badawy, M.E-T.; Stevens, C.V.; Smagghe, G.; Steurbaut, W. Chitosan as antimicrobial agent: applications and mode of action. Biomacromolecules, 2003, 4, 1457-1465.
[7]
Marei, G.I.K.; Rabea, E.I.; Badawy, M.E.I. Preparation and characterizations of chitosan/citral nanoemulsions and their antimicrobial activity. Appl. Food Biotech, 2018, 5, 69-78.
[8]
Windholz, M.; Budavari, S.; Blumetti, R.F.; Otterbein, E.S. The Merck Index; Rahway, NJ: Merck. , 1983.
[9]
Templeton, W. An introduction to the chemistry of the terpenoids and steroids., 1969.
[10]
Budzikiewicz, H.; Djerassi, C.; Williams, D.H. Structure elucidation of natural products by mass spectrometry: Steroids, terpenoids, sugars, and miscellaneous classes; San Francisco Holden-Day,. , 1964, Vol. 2, .
[11]
Garcia, R.; Alves, E.S.S.; Santos, M.P.; Aquije, G.M.F.; Fernandes, A.A.R.; Santos, R.B.D.; Ventura, J.A.; Fernandes, P. Antimicrobial activity and potential use of monoterpenes as tropical fruits preservatives. Braz. J. Microbiol., 2008, 39, 163-168.
[12]
Kordali, S.; Kesdek, M.; Cakir, A. Toxicity of monoterpenes against larvae and adults of Colorado-potato beetle, Leptinotarsa decemlineata Say (Coleoptera: Chrysomelidae). Ind. Crops and Prod., 2007, 26, 278-297.
[13]
Abdelgaleil, S.A.M.; Mohamed, M. I.E.; Badawy M.E.I.; El-arami S.A.A. Fumigant and contact toxicities of monoterpenes to Sitophilus oryzae (L.) and Tribolium castaneum (Herbst) and their inhibitory effects on acetylcholinesterase activity. J. Chem. Ecol., 2009, 35, 518-525.
[14]
Badawy, M.E.I.; El-Arami, S.A.A.; Abdelgaleil, S.A.M. Acaricidal and quantitative structure activity relationship of monoterpenes against the two-spotted spider mite, Tetranychus urticae. Exp. Appl. Acarol., 2010, 52, 261-274.
[15]
Rabea, E.I.; Badawy, M.E.I. Antimicrobial activity of biopolymer chitosans and monoterpenes against the honeybee pathogens Paenibacillus larvae and Ascosphaera apis. J. Chitin Chitosan Sci, 2014, 2, 306-310.
[16]
Grodnitzky, J.A.; Coats, J.R. QSAR evaluation of monoterpenoids’ insecticidal activity. J. Agric. Food Chem., 2002, 50, 4576-4580.
[17]
Hansch, C.; Leo, A.; Hoekman, D.; Leo, A. Exploring QSAR: fundamentals and applications in chemistry and biology; American Chemical Society: Washington, DC, 1995.
[18]
Devillers, J.; Balaban, A.T. Topological indices and related descriptors in QSAR and QSPAR; CRC Press: Singapore, 2000.
[19]
Rabea, E.I.; Badawy, M.E.I.; Ismail, R.I.A. In-vitro antimicrobial and Quantitative Structure Activity Relationship (QSAR) of natural monoterpenes against plant pathogenic bacteria. Glob. J. Agric. Food Saf. Sci., 2015, 2, 111-130.
[20]
Paluch, G.; Grodnitzky, J.; Bartholomay, L.; Coats, J. Quantitative structure− activity relationship of botanical sesquiterpenes: Spatial and contact repellency to the yellow fever mosquito, Aedes aegypti. J. Agric. Food Chem., 2009, 57, 7618-7625.
[21]
Dwivedi, N.; Mishra, S.; Mishra, B.N.; Singh, R.; Katoch, V.M. 3D QSAR Based study of potent growth inhibitors of terpenes as antimycobacterial agents. Open Nutr. J., 2011, 4, 119-124.
[22]
Tong, F.; Coats, J.R. Quantitative structure–activity relationships of monoterpenoid binding activities to the housefly GABA receptor. Pest Manag. Sci., 2012, 68, 1122-1129.
[23]
Andrade-Ochoa, S.; Nevárez-Moorillón, G.V.; Sánchez-Torres, L.E.; Villanueva-García, M.; Sánchez-Ramírez, B.E.; Rodríguez-Valdez, L.M.; Rivera-Chavira, B.E. Quantitative structure-activity relationship of molecules constituent of different essential oils with antimycobacterial activity against Mycobacterium tuberculosis and Mycobacterium bovis. BMC Complement. Altern. Med., 2015, 15, 1.
[24]
Dambolena, J.S.; López, A.G.; Meriles, J.M.; Rubinstein, H.R.; Zygadlo, J.A. Inhibitory effect of 10 natural phenolic compounds on Fusarium verticillioides. A structure–property–activity relationship study. Food Control, 2012, 28, 163-170.
[25]
Gao, Y.; Wang, Y.; Li, J.; Shang, S.; Song, Z. Improved application of natural forest product terpene for discovery of potential botanical fungicide. Ind. Crops and Prod., 2018, 126, 103-112.
[26]
Badawy, M.E.I.; Rabea, E.I.; Taktak, N.E.M. Antimicrobial and inhibitory enzyme activity of N-(benzyl) and quaternary N-(benzyl) chitosan derivatives on plant pathogens. Carbohydr. Polym., 2014.
[27]
Finney, D.J. Probit Analysis, 3rd ed; Cambridge University Press, 1971.
[28]
Tetko, I.V.; Gasteiger, J.; Todeschini, R.; Mauri, A.; Livingstone, D.; Ertl, P.; Palyulin, V.A.; Radchenko, E.V.; Zefirov, N.S.; Makarenko, A.S. Virtual computational chemistry laboratory-design and description. J. Comput. Aided Mol. Des., 2005, 19, 453-463.
[29]
Hansch, C.; Fujita, T. p-σ-π Analysis. A method for the correlation of biological activity and chemical structure. J. Am. Chem. Soc., 1964, 86, 1616-1626.
[30]
Stoll, F.; Liesener, S.; Hohlfeld, T.; Schrör, K.; Fuchs, P.L.; Höltje, H-D. Pharmacophore definition and three-dimensional quantitative structure-activity relationship study on structurally diverse prostacyclin receptor agonists. Mol. Pharmacol., 2002, 62, 1103-1111.
[31]
Wolber, G.; Langer, T. LigandScout: 3-D pharmacophores derived from protein-bound ligands and their use as virtual screening filters. J. Chem. Inf. Model., 2005, 45, 160-169.
[32]
Wolber, G.; Dornhofer, A.A.; Langer, T. Efficient overlay of small organic molecules using 3D pharmacophores. J. Comput. Aided Mol. Des., 2006, 20, 773-788.
[33]
Halgren, T.A. MMFF VI. MMFF94s option for energy minimization studies. J. Comput. Chem., 1999, 20(7), 720-729.
[34]
De Oliveira, D.B.; Gaudio, A.C. BuildQSAR: A New Computer Program for QSAR Analysis. Quant. Struct.-. Act. Relat, 2001, 19, 599-601.
[35]
Gramatica, P. Principles of QSAR models validation: internal and external. QSAR and Combinat Sci., 2007, 26, 694-701.
[36]
Alexander, D.L.J.; Tropsha, A.; Winkler, D.A. Beware of R2: simple, unambiguous assessment of the prediction accuracy of QSAR and QSPR models. J. Chem. Inf. Model., 2015, 55, 1316-1322.
[37]
Cowan, M.M. Plant products as antimicrobial agents. Clin. Microbiol. Rev., 1999, 12, 564-582.
[38]
Trombetta, D.; Castelli, F.; Sarpietro, M.G.; Venuti, V.; Cristani, M.; Daniele, C.; Saija, A.; Mazzanti, G.; Bisignano, G. Mechanisms of antibacterial action of three monoterpenes. Antimicrob. Agents Chemother., 2005, 49, 2474-2478.
[39]
Cristani, M.; D’Arrigo, M.; Mandalari, G.; Castelli, F.; Sarpietro, M.G.; Micieli, D.; Venuti, V.; Bisignano, G.; Saija, A.; Trombetta, D. Interaction of four monoterpenes contained in essential oils with model membranes: implications for their antibacterial activity. J. Agric. Food Chem., 2007, 55, 6300-6308.
[40]
Sikkema, J.; De Bont, J.A.; Poolman, B. Mechanisms of membrane toxicity of hydrocarbons. Microbiol. Rev., 1995, 59, 201-222.
[41]
Marei, G.I.K.; Rasoul, M.A.A.; Abdelgaleil, S.A.M. Comparative antifungal activities and biochemical effects of monoterpenes on plant pathogenic fungi. Pestic. Biochem. Physiol., 2012, 103, 56-61.
[42]
Tsao, R.; Zhou, T. Antifungal activity of monoterpenoids against postharvest pathogens Botrytis cinerea and Monilinia fructicola. J. Essent. Oil Res., 2000, 12, 113-121.
[43]
Kordali, S.; Cakir, A.; Ozer, H.; Cakmakci, R.; Kesdek, M.; Mete, E. Antifungal, phytotoxic and insecticidal properties of essential oil isolated from Turkish Origanum acutidens and its three components, carvacrol, thymol and p-cymene. Bioresour. Technol., 2008, 99, 8788-8795.
[44]
Hartmans, K.J.; Diepenhorst, P.; Bakker, W.; Gorris, L.G.M. The use of carvone in agriculture: sprout suppression of potatoes and antifungal activity against potato tuber and other plant diseases. Ind. Crops Prod., 1995, 4, 3-13.
[45]
Penalver, P.; Huerta, B.; Borge, C.; Astorga, R.; Romero, R.; Perea, A. Antimicrobial activity of five essential oils against origin strains of the Enterobacteriaceae family. APMIS, 2005, 113, 1-6.
[46]
Jalali-Heravi, M.; Kyani, A. Use of computer-assisted methods for the modeling of the retention time of a variety of volatile organic compounds: a PCA-MLR-ANN approach. J. Chem. Inf. Comput. Sci., 2004, 44, 1328-1335.
[47]
Gupta, M.K.; Mishra, P.; Prathipati, P.; Saxena, A.K. 2D-QSAR in hydroxamic acid derivatives as peptide deformylase inhibitors and antibacterial agents. Bioorg. Med. Chem., 2002, 10, 3713-3716.
[48]
Xu, M.; Zhang, A.; Han, S.; Wang, L. Studies of 3D-quantitative structure–activity relationships on a set of nitroaromatic compounds: CoMFA, advanced CoMFA and CoMSIA. Chemosphere, 2002, 48, 707-715.
[49]
Gupta, M.K.; Mishra, P.; Prathipati, P.; Saxena, A.K. 2D-QSAR in hydroxamic acid derivatives as peptide deformylase inhibitors and antibacterial agents. Bioorg. Med. Chem., 2002, 10, 3713-3716.
[50]
Chang, H-J.; Kim, H.J.; Chun, H.S. Quantitative Structure-Activity Relationship (QSAR) for neuroprotective activity of terpenoids. Life Sci., 2007, 80, 835-841.
[51]
Kumar, P.; Narasimhan, B.; Sharma, D.; Judge, V.; Narang, R. Hansch analysis of substituted benzoic acid benzylidene/furan-2-yl-methylene hydrazides as antimicrobial agents. Eur. J. Med. Chem., 2009, 44, 1853-1863.
[52]
Takayama, C.; Fujinami, A. Quantitative structure-activity relationships of antifungal N-phenylsuccinimides and N-phenyl-1, 2-dimethylcyclopropanedicarboximides. Pestic. Biochem. Physiol., 1979, 12, 163-171.
[53]
Perdih, A.; Kovač, A.; Wolber, G.; Blanot, D.; Gobec, S.; Solmajer, T. Discovery of novel benzene 1, 3-dicarboxylic acid inhibitors of bacterial MurD and MurE ligases by structure-based virtual screening approach. Bioorg. Med. Chem. Lett., 2009, 19, 2668-2673.
[54]
Brvar, M.; Perdih, A.; Oblak, M.; Mašič, L.P.; Solmajer, T. In silico discovery of 2-amino-4-(2, 4-dihydroxyphenyl) thiazoles as novel inhibitors of DNA gyrase B. Bioorg. Med. Chem. Lett., 2010, 20, 958-962.