[1]
DeRisi J, Penland L, Brown PO, et al. Use of a cDNA microarray to analyse gene expression patterns in human cancer. Nat Genet 1996; 14(4): 457-60.
[2]
Groen AK. The pros and cons of gene expression analysis by microarrays. J Hepatol 2001; 35(2): 295-6.
[3]
Lambrou GI, Adamaki M, Koultouki E, et al. Systems Biolo-gy Methodologies for the Understanding of Common Onco-genetic Mechanisms in Childhood Leukemic and Rhabdomy-osarcoma Cells Quality Assurance in Healthcare Service Delivery, Nursing and Personalized Medicine: Technologies and Processes: Technologies and Processes. Hershey, PA: IGI Global 2012; pp. 111-68.
[4]
Jiang D, Tang C, Zhang A. Cluster analysis for gene expres-sion data: a survey. IEEE Trans Knowl Data Eng 2004; 16(11): 1370-86.
[7]
Madeira SC, Oliveira AL. Biclustering algorithms for biologi-cal data analysis: a surveyIEEE/ACM Trans Comput Biol Bioinform 2004; 1(1): 24-45.
[8]
Kluger Y, Basri R, Chang JT, Gerstein M. Spectral biclustering of microarray data: coclustering genes and conditions. Genome Res 2003; 13(4): 703-16.
[9]
Yin L, Huang CH, Ni J. Clustering of gene expression data: performance and similarity analysis. BMC Bioinformatics 2006; 7(Suppl. 4): S19.
[10]
D’haeseleer P. How does gene expression clustering work? Nat Biotechnol 2005; 23(12): 1499-501.
[11]
Mahanta P, Ahmed HA, Bhattacharyya DK, et al. Triclustering in gene expression data analysis: A selected survey Emerging Trends and Applications in Computer Science. NCETACS 2011.
[13]
Bhar A, Haubrock M, Mukhopadhyay A, Maulik U, Bandyopadhyay S, Wingender E. Coexpression and coregulation analysis of time-series gene expression data in estrogen-induced breast cancer cell. Algorithms Mol Biol 2013; 8(1): 9.
[14]
Ciaramella A, Cocozza S, Iorio F, et al. Interactive data analysis and clustering of genomic data. Neural Netw 2008; 21(2-3): 368-78.
[16]
Araújo RB, Ferreira GHT, Orair GH, et al. The ParTriCluster algorithm for gene expression analysis. Int J Parallel Program 2008; 36(2): 226-49.
[17]
Jiang D, Pei J, Ramanathan M, et al. Mining coherent gene clusters from gene-sample-time microarray data in Proceedings of the tenth ACM SIGKDD international conference on Knowledge discovery and data mining ACM: Seattle, WA, USA. 2004; 430-39.
[18]
Tchagang AB, Phan S, Famili F, et al. Mining biological information from 3D short time-series gene expression data: the OPTricluster algorithm. BMC Bioinformatics 2012; 13: 54.
[19]
Mankad S, Michailidis G. Biclustering Three-Dimensional Data Arrays With Plaid Models. J Comput Graph Stat 2014; 23(4): 943-65.
[20]
Li A, Tuck D. An effective tri-clustering algorithm combining expression data with gene regulation information. Gene Regul Syst Bio 2009; 3: 49-64.
[21]
Cohen BA, Mitra RD, Hughes JD, Church GM. A computational analysis of whole-genome expression data reveals chromosomal domains of gene expression. Nat Genet 2000; 26(2): 183-6.
[22]
Reyal F, Stransky N, Bernard-Pierrot I, et al. Visualizing chromosomes as transcriptome correlation maps: evidence of chromosomal domains containing co-expressed genes--a study of 130 invasive ductal breast carcinomas. Cancer Res 2005; 65(4): 1376-83.
[23]
Sturn A, Quackenbush J, Trajanoski Z. Genesis: cluster analysis of microarray data. Bioinformatics 2002; 18(1): 207-8.
[24]
Lloyd S. Least squares quantization in PCM. IEEE Trans Inf Theory 1982; 28(2): 129-37.
[25]
Ball GH, Hall DJ. A clustering technique for summarizing multivariate data. Behav Sci 1967; 12(2): 153-5.
[26]
MacQueen J. Some methods for classification and analysis of multivariate observations. Proceedings of the fifth Berkeley symposium on mathematical statistics and probability Oakland, CA, USA.
Vol. 1 (Univ. of Calif. Press, 1967). 281-97.
[27]
Zaravinos A, Lambrou GI, Boulalas I, Delakas D, Spandidos DA. Identification of common differentially expressed genes in urinary bladder cancer. PLoS One 2011; 6(4)e18135
[29]
Van Der Walt S, Colbert SC, Varoquaux G. The NumPy array: a structure for efficient numerical computation. Comput Sci Eng 2011; 13(2): 22-30.
[30]
McKinney W. Data structures for statistical computing in Python. Proceedings of the 9th Python in Science Conference 2010.
[31]
Pérez F, Granger BE. IPython: A System for Interactive Scien-tific Computing. Comput Sci Eng 2007; 9(3): 21-9.
[32]
Hunter JD. Matplotlib: A 2D graphics environment. Comput Sci Eng 2007; 9(3): 90-5.
[33]
Pedregosa F, Varoquaux G, Gramfort A, et al. Scikit-learn: Machine learning in Python. J Mach Learn Res 2011; 12(Oct): 2825-30.
[34]
Raybaut P, Davar G. Python (x, y) scientific-oriented python distribution
based on qt and spyder.
[35]
Mengual L, Burset M, Ars E, et al. DNA microarray expression profiling of bladder cancer allows identification of noninvasive diagnostic markers. J Urol 2009; 182(2): 741-8.
[36]
Amaratunga D, Cabrera J. Analysis of Data From Viral DNA Microchips. J Am Stat Assoc 2001; 96(456): 1161-70.
[37]
Bolstad B. Probe level quantile normalization of high density oligonucleotide array data 2001; 1-8.
[38]
Chandran UR, Ma C, Dhir R, et al. Gene expression profiles of prostate cancer reveal involvement of multiple molecular pathways in the metastatic process. BMC Cancer 2007; 7: 64.
[39]
Sîrbu A, Ruskin HJ, Crane M. Cross-platform microarray data normalisation for regulatory network inference. PLoS One 2010; 5(11)e13822
[40]
Ramasamy A, Mondry A, Holmes CC, Altman DG. Key issues in conducting a meta-analysis of gene expression microarray datasets. PLoS Med 2008; 5(9)e184
[41]
Kollegal M, Adak S, Shippy R, et al. Considerations in Making
Microarray Cross-Platform Correlations. in CSB Workshops. 2005.Stanford, CA, USA.
[42]
Yauk CL, Berndt ML, Williams A, Douglas GR. Comprehensive comparison of six microarray technologies. Nucleic Acids Res 2004; 32(15)e124
[43]
Bolstad BM, Irizarry RA, Astrand M, Speed TP. A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 2003; 19(2): 185-93.
[44]
Wu W, Dave N, Tseng GC, Richards T, Xing EP, Kaminski N. Comparison of normalization methods for CodeLink Bioarray data. BMC Bioinformatics 2005; 6: 309.
[45]
Hastie T, Tibshirani R, Sherlock G, et al. Imputing missing data for gene expression arrays Stanford University Statistics Department
Technical report. 1999.
[46]
Troyanskaya O, Cantor M, Sherlock G, et al. Missing value estimation methods for DNA microarrays. Bioinformatics 2001; 17(6): 520-5.
[47]
Malarvizhi MR, Thanamani AS. K-nearest neighbor in miss-ing data imputation. Int J Eng Res Dev 2012; 5(1): 5-7.
[48]
Pham DT, Dimov SS, Nguyen CD. Selection of K in K-means clustering. Proc Inst Mech Eng, C J Mech Eng Sci 2005; 219(1): 103-19.
[49]
Arthur D, Vassilvitskii S. k-means++: The advantages of careful seeding. Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete algorithms 2007.
[50]
Monnot J. Approximation algorithms for the maximum Ham-iltonian path problem with specified endpoint. Eur J Oper Res 2005; 161(3): 721-35.
[51]
Braga Araújo R, Trielli Ferreira GH, Orair GH, et al. The Par-TriCluster Algorithm for Gene Expression Analysis. Int J Parallel Program 2008; 36(2): 226-49.
[52]
Dunn JC. A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters 1973.
[53]
McLachlan GJ, Basford KE. Mixture models Inference and applications to clustering Statistics: Textbooks and Mono-graphs. New York: Dekker 1988; p. 1.
[54]
Maulik U, Bandyopadhyay S. Genetic algorithm-based clus-tering technique. Pattern Recognit 2000; 33(9): 1455-65.