[1]
"J.L. Herlocker J.L. Herlocker, J.A. Konstan,L.G. Terveen, and J.T. Riedl, “Evaluating collaborative filtering recommender systems", ACM Trans. Information Systems, vol. 22, no. 1, pp. 5-53. 2004
[2]
E. Rich, "User modeling via stereotypes", Cognit. Sci., vol. 3, no. 4, pp. 329-354, 1979.
[3]
D. Goldberg, D. Nichols, B.M. Oki, and D. Terry, "Using collaborative filtering to weave an information tapestry", Commun. ACM, vol. 35, no. 12, pp. 61-70, 1992.
[4]
P. Resnick, N. Iacovou, M. Suchak, P. Bergstrom, and J. Riedl, "Group Lens: An open architecture for collaborative filtering of netnews", In: Proceedings of the 1994 ACM conference on Computer supported cooperative work.Chapel Hill, North Carolina, USA 1994, pp. 175-186.
[5]
B. Sarwar, G. Karypis, J. Konstan, and J. Riedl, "Item-based collaborative filtering recommendation algorithms", In: Proceedings of the 10th international conference on World Wide Web.Hong Kong, Hong Kong 2001, pp. 285-295
[6]
Y.H. Chien, and E.I. George, "A bayesian model for collaborative filtering", Proceedings for Seventh International Workshop in Artificial Intelligence and Statistics. 1999
[7]
D. Pavlov, and D. Pennock, A maximum entropy approach to collaborative filtering in dynamic, sparse, high-dimensional domains., Advan. Neur. Info. Process. Syst: Vancouver, Canada, 2002.
[8]
M.J. Pazzani, and D. Billsus, Content-based recommendation systems.The Adaptive Web.P. Brusilovsky, A. Kobsa, and W.Nejdl, eds.Springer-Verlag, . Vol. 4321, 2007, pp. 325-341
[9]
M. Pazzani, and D. Billsus, "Learning and revising user profiles: the identification of interesting web sites", Mach. Learn., vol. 27, pp. 313-331, 1997.
[10]
N. Littlestone, and M. Warmuth, "The weighted majority algorithm", Inf. Comput., vol. 108, no. 2, pp. 212-261, 1994.
[11]
R.J. Mooney, P.N. Bennett, and L. Roy, "Book recommending using text categorization with extracted information", In Proc.Recommender Systems Papers from 1998 Workshop, Technical Report WS-98-08,. 1998
[12]
S. Robertson, and S. Walker, "Threshold setting in adaptive filtering", J. Documentation., vol. 56, pp. 312-331, 2000.
[13]
I. Soboroff, and C. Nicholas, "Combining Content and Collaboration in Text Filtering", Proceedings of the IJCAI. Aug 1999
[14]
L.H. Ungar, and D.P. Foster, "“Clustering Methods for Collaborative Filtering”, AAAI workshop on recommendation systems", Technical Report. 1998, Vol. 1, pp. 114-129.
[15]
G. Adomavicius, and A. Tuzhilin, Context-Aware Recommender Systems.Recommender Systems Handbook: A Complete Guide for Research Scientists and Practitioners.L. Rokach, B. Shapira, P.Kantor, and F. Ricci, eds, Springer: Heidelberg, Berlin, 2011, pp. 217-250.
[16]
Y-K. Wang, "Context awareness and adaptation in mobile learning", In: The 2nd IEEE International Workshop on Wireless and Mobile Technologies in Education, 2004 Proceedings. 2004, pp.154-158.
[17]
A. Dey, G. Abowd, and D. Salber, "A conceptual framework and a toolkit for supporting the rapid prototyping of context-aware applications", Human. Comput. Interact., vol. 16, pp. 97-166, Dec 2001.
[18]
B. Hawashin, A. Abusukhon, and A. Mansour, "An efficient user interest extractor for recommender systems", In: Proceedings of the World Congress on Engineering and Computer Science, vol. 2. 2015.
[19]
B. Hawashin, and A. Mansour, "An efficient agent based recommender system to extract interests of user groups", In: Proceedings of the World Congress on Engineering and Computer Science, vol. Vol. 1. 2016.
[20]
Y.Z. Wei, L. Moreau, and N.R. Jennings, "Learning users’ interests by quality classification in market-based recommender systems", IEEE Trans. Knowl. Data Eng., vol. 17, no. 12, pp. 1678-1688, December 2005.
[21]
A.M. Mansour, M.A. Obaidat, and B. Hawashin, "Elderly people health monitoring system using fuzzy rule based approach", Intl. J. Advan. Comp. Res., vol. 4, p. 904, 2014.
[22]
P. Vashisth, and P. Bedi, "Interest-based personalized recommender system", World Congress on Information and Communication Technologies. 2011
[23]
G. Aghili, M. Shajari, S. Khadivi, and M.A. Morid, "Using Genre Interest of Users to Detect Profile Injection Attacks in Movie Recommender Systems", Proc. 10th Ann. Conf. Machine Learning and ApplicationsIEEE, . 2011, pp. 245-250.
[26]
M.P.K. Reddy, and M.R. Babu, "Energy efficient cluster head selection for internet of things", New Rev. Info. Network., vol. 22, pp. 54-70, 2017.
[27]
"Word2Vec Toolkit. Tool for computing continuous distributed representations of words", https://code.google.com/archive/p/word2vec/. Last Accessed: September 2018.
[28]
E. Frank, M.A. Hall, and I.H. Witten, The WEKA Workbench. Online Appendix for “Data mining: Practical machine learning tools and techniques”..Fourth Edition, Burlington: MA, Morgan Kaufmann,, 2016