[1]
Ortiz, A.; Tejedor, A.; Caramelo, C. Nephrotoxicity. In Dykens,
J.A.; Will, Y. (Eds.). Drug-Induced Mitochondrial Dysfunction;
John Wiley & Sons, Inc. 2008, pp. 291-310.
[2]
Naughton, C.A. Drug-induced nephrotoxicity. Am. Fam. Physician, 2008, 78(6), 743-750.
[3]
Hara, M.; Suganuma, A.; Yanagisawa, N.; Imamura, A.; Hishima, T.; Ando, M. Atazanavir nephrotoxicity. Clin. Kidney J., 2015, 8, 137-142.
[4]
Akca, G.; Eren, H.; Tumkaya, L.; Mercantepe, T.; Horsanali, M.O.; Deveci, E.; Dil, E.; Yilmaz, A. The protective effect of astaxanthin against cisplatin-induced nephrotoxicity in rats. Biomed. Pharmacother., 2018, 100, 575-582.
[5]
Nicholson, J.K.; Kendall, M.D.; Osborn, D. Cadmium and mercury nephrotoxicity. Nature, 1983, 304, 633-635.
[6]
Robles-Osorio, M.L.; Sabath-Silva, E.; Sabath, E. Arsenic-mediated nephrotoxicity. Ren. Fail., 2015, 37(4), 542-547.
[7]
Gonick, H.C. Nephrotoxicity of cadmium & lead. Indian J. Med. Res., 2008, 128(4), 335-352.
[8]
Ke, Q.; Costa, M. Overview of chromium (III) toxicology. In:
Vincent, J. (ed). The Nutritional Biochemistry of Chromium (III).
Amsterdam, Netherlands: Elsevier; 2007, pp. 257-263.
[9]
Lynes, M.A.; Kang, Y.J.; Sensi, S.L.; Perdrizet, G.A.; Hightower, L.E. Heavy metal ions in normal physiology, toxic stress, and cytoprotection. Ann. N. Y. Acad. Sci., 2007, 1113, 159-172.
[10]
Zhong, W.; Zhang, Y.; Wu, Z.; Yang, R.; Chen, X.; Yang, J.; Zhu, L. Health risk assessment of heavy metals in freshwater fish in the Central and Eastern North China. Ecotoxicol. Environ. Saf., 2018, 157, 343-349.
[11]
Fomina, M.; Ritz, K.; Gadd, G.M. Negative fungal chemotropism to toxic metals. FEMS Microbiol. Lett., 2000, 193, 207-211.
[12]
EL-Bady, M.S.M. Toxic levels of some heavy metals in drinking network surface water of Damietta Governorate, Egypt. Int. J. Chemtech Res., 2016, 9, 118-123.
[13]
Chen, D.; Ray, A.K. Removal of toxic metal ions from wastewater by semiconductor photocatalysis. Chem. Eng. Sci., 2001, 56, 1561-1570.
[14]
Sabath, E.; Robles-Osorio, M.L. Renal health and the environment: Heavy metal nephrotoxicity. Nefrologia, 2012, 32, 279-286.
[15]
Tokar, E.J.; Benbrahim-Tallaa, L.; Waalkes, M.P. Metal ions in human cancer development. Met. Ions Life Sci., 2011, 8, 375-401.
[16]
Stejskal, V.; Hudecek, R.; Stejskal, J.; Sterzl, I. Diagnosis and treatment of metal-induced side-effects. Neuroendocrinol. Lett., 2006, 27(Suppl. 1), 7-16.
[17]
Singerman, A. Exposure to toxic metals: Biological effects and their monitoring. Tech. Instrum. Anal. Chem., 1989, 4, 17-93.
[18]
Penner-Hahn, J.E. Technologies for detecting metals in single cells. Met. Ions Life Sci., 2013, 12, 15-40.
[19]
Cerminati, S.; Soncini, F.C.; Checa, S.K. A sensitive whole-cell biosensor for the simultaneous detection of a broad-spectrum of toxic heavy metal ions. Chem. Commun., 2015, 51, 5917-5920.
[20]
Gupta, V.K.; Ganjali, M.R.; Norouzi, P.; Khani, H.; Nayak, A.; Agarwal, S. Electrochemical analysis of some toxic metals by ion-selective electrodes. Crit. Rev. Anal. Chem., 2011, 41(4), 282-313.
[21]
Wang, J.; Zhou, H.S. Colorimetric Biosensor for Food Chemical Hazards Detection. In: Wang, S. (ed.). Food Chemical Hazard Detection: Development and Application of New Technologies; John Wiley & Sons, Inc., 2014; pp. 291-313.
[22]
Farzin, L.; Shamsipur, M.; Sheibani, S. A review: Aptamer-based analytical strategies using the nanomaterials for environmental and human monitoring of toxic heavy metals. Talanta, 2017, 174, 619-627.
[23]
Cuero, R.; Lilly, J.; McKay, D.S. Constructed molecular sensor to enhance metal detection by bacterial ribosomal switch-ion channel protein interaction. J. Biotechnol., 2012, 158, 1-7.
[24]
Xu, H.W.; Masila, M.; Yan, F.; Sadik, O.A. Multiarray sensors for pesticides and toxic metals. Proc. SPIE, 1999, 3534, 437-445.
[25]
Gopinath, S.C.B. Antiviral aptamers. Arch. Virol., 2007, 152, 2137-2157.
[26]
Toh, S.Y.; Citartan, M.; Gopinath, S.C.B.; Tang, T-H. Aptamers as a replacement for antibodies in enzyme-linked immunosorbent assay. Biosens. Bioelectron., 2015, 64, 392-403.
[27]
Gopinath, S.C.B.; Misono, T.S.; Kawasaki, K.; Mizuno, T.; Imai, M.; Odagiri, T.; Kumar, P.K.R. An RNA aptamer that distinguishes between closely related human influenza viruses and inhibits haemagglutinin-mediated membrane fusion. J. Gen. Virol., 2006, 87, 479-487.
[28]
Huang, Y.; Wang, X.; Duan, N.; Xia, Y.; Wang, Z.; Che, Z.; Wang, L.; Yang, X.; Chen, X. Selection and characterization, application of a DNA aptamer targeted to Streptococcus pyogenes in cooked chicken. Anal. Biochem., 2018, 551, 37-42.
[29]
Zhang, H.; Wang, Z.; Xie, L.; Zhang, Y.; Deng, T.; Li, J.; Liu, J.; Xiong, W.; Zhang, L.; Zhang, L.; Peng, B.; He, L.; Ye, M.; Hu, X.; Tan, W. Molecular recognition and in vitro targeted inhibition of renal cell carcinoma using a DNA aptamer. Mol. Ther. Nucleic Acids, 2018, 12, 758-768.
[30]
Gasse, C.; Zaarour, M.; Noppen, S.; Abramov, M.; Marlière, P.; Liekens, S.; De Strooper, B.; Herdewijn, P. Modulation of BACE1 activity by chemically modified aptamers. ChemBioChem, 2018, 19, 754-763.
[31]
Cheen, O.C.; Gopinath, S.C.B.; Perumal, V.; Arshad, M.K.M.; Lakshmipriya, T.; Chen, Y.; Haarindraprasad, R.; Rao, B.S.; Hashim, U.; Pandian, K. Aptamer-based impedimetric determination of the human blood clotting factor IX in serum using an interdigitated electrode modified with a ZnO nanolayer. Mikrochim. Acta, 2017, 184, 117-125.
[32]
Gopinath, S.C.B.; Balasundaresan, D.; Akitomi, J.; Mizuno, H. An RNA aptamer that discriminates bovine factor IX from human factor IX. J. Biochem., 2006, 140, 667-676.
[33]
Gopinath, S.C.B.; Awazu, K.; Fujimaki, M.; Sugimoto, K.; Ohki, Y.; Komatsubara, T.; Tominaga, J.; Gupta, K.C.; Kumar, P.K.R. Influence of nanometric holes on the sensitivity of a waveguide-mode sensor: Label-free nanosensor for the analysis of RNA aptamer-ligand interactions. Anal. Chem., 2008, 80, 6602-6609.
[34]
Gopinath, S.C.B. Antiviral aptamers. Arch. Virol., 2007, 152(12), 2137-2157.
[35]
Gopinath, S.C.B.; Lakshmipriya, T.; Chen, Y.; Phang, W-M.; Hashim, U. Aptamer-based “point-of-care testing.”. Biotechnol. Adv., 2016, 34, 198-208.
[36]
Gopinath, S.C.B.; Kumar, P.K.R. Aptamers that bind to the hemagglutinin of the recent pandemic influenza virus H1N1 and efficiently inhibit agglutination. Acta Biomater., 2013, 9, 8932-8941.
[37]
Lakshmipriya, T.; Fujimaki, M.; Gopinath, S.C.B.; Awazu, K.; Horiguchi, Y.; Nagasaki, Y. A high-performance waveguide-mode biosensor for detection of factor IX using PEG-based blocking agents to suppress non-specific binding and improve sensitivity. Analyst, 2013, 138, 2863-2870.
[38]
Lakshmipriya, T.; Horiguchi, Y.; Nagasaki, Y. Co-immobilized poly(ethylene glycol)-block-polyamines promote sensitivity and restrict biofouling on gold sensor surface for detecting factor IX in human plasma. Analyst, 2014, 139, 3977-3985.
[39]
Lakshmipriya, T.; Fujimaki, M.; Gopinath, S.C.B.; Awazu, K. Generation of anti-in fl uenza aptamers using the systematic evolution of ligands by exponential enrichment for sensing applications. Langmuir, 2013, 29(48), 15107-15115.
[40]
Citartan, M.; Gopinath, S.C.B.; Tominaga, J.; Tan, S.C.; Tang, T.H. Assays for Aptamer-based platforms. Biosens. Bioelectron., 2012, 34, 1-11.
[41]
Shigdar, S.; Lin, J.; Yu, Y.; Pastuovic, M.; Wei, M.; Duan, W. RNA aptamer against a cancer stem cell marker epithelial cell adhesion molecule. Cancer Sci., 2011, 102, 991-998.
[42]
Subramanian, N.; Kanwar, J.R.; Athalya, P.k.; Janakiraman, N.; Khetan, V.; Kanwar, R.K.; Eluchuri, S.; Krishnakumar, S. EpCAM aptamer mediated cancer cell specific delivery of EpCAM siRNA using polymeric nanocomplex. J. Biomed. Sci., 2015, 22, 4.
[43]
Song, K.M.; Cho, M.; Jo, H.; Min, K.; Jeon, S.H.; Kim, T.; Han, M.S.; Ku, J.K.; Ban, C. Gold nanoparticle-based colorimetric detection of kanamycin using a DNA Aptamer. Anal. Biochem., 2011, 415, 175-181.
[44]
Mazaafrianto, D.N.; Maeki, M.; Ishida, A.; Tani, H.; Tokeshi, M. Recent microdevice-based aptamer sensors. Micromachines (Basel), 2018, 9(5), 202.
[45]
Gülbakan, B.; Barylyuk, K.; Schneider, P.; Pillong, M.; Schneider, G.; Zenobi, R. Native electrospray ionization mass spectrometry reveals multiple facets of aptamer-ligand interactions: From mechanism to binding constants. J. Am. Chem. Soc., 2018, 140, 7486-7497.
[46]
Yadav, R.; Gaur, M.S.; Bhadauria, S.; Berlina, A.N.; Dzantiev, B.B. Efficient chemiluminescence by aptamer–reactant platform combination with activated Ag–Au alloy nanoparticles for cobalt detection. Int. J. Environ. Anal. Chem., 2018, 98, 570-581.
[47]
Gopinath, S.C.B.; Tang, T.; Chen, Y.; Citartan, M.; Tominaga, J.; Lakshmipriya, T. Biosensors and bioelectronics sensing strategies for in Fl Uenza surveillance. Biosens. Bioelectron., 2014, 61, 357-369.
[48]
Gopinath, S.C.B.; Lakshmipriya, T.; Awazu, K. Colorimetric detection of controlled assembly and disassembly of aptamers on unmodified gold nanoparticles. Biosens. Bioelectron., 2014, 51, 115-123.
[49]
Gopinath, S.C.B.; Kumaresan, R.; Awazu, K.; Fujimaki, M.; Mizuhata, M.; Tominaga, J.; Kumar, P.K.R. Evaluation of nucleic acid duplex formation on gold over layers in biosensor fabricated using Czochralski-Grown single-crystal silicon substrate. Anal. Bioanal. Chem., 2010, 398, 751-758.
[50]
Brenneman, K.L.; Sen, B.; Stroscio, M.A.; Dutta, M. Aptamer-based optical bionano sensor for mercury(II) ions. 2010 IEEE Nanotechnology Materials and Devices Conference, Monterey, CA, USA2010, pp. 221-224.
[51]
Liu, F.; Zhang, J.; Chen, R.; Chen, L.; Deng, L. Highly effective colorimetric and visual detection of ATP by a DNAzyme-aptamer sensor. Chem. Biodivers., 2011, 8, 311-316.
[52]
Thévenod, F. Nephrotoxicity and the proximal tubule: Insights from cadmium. Nephron, Physiol., 2003, 93(4), 87-93.
[53]
Prozialeck, W.C.; Edwards, J.R. Mechanisms of cadmium-induced proximal tubule injury: New insights with implications for biomonitoring and therapeutic interventions. J. Pharmacol. Exp. Ther., 2012, 343, 2-12.
[54]
Zorrig, W.; Rouached, A.; Shahzad, Z.; Abdelly, C.; Davidian, J.C.; Berthomieu, P. Identification of three relationships linking cadmium accumulation to cadmium tolerance and zinc and citrate accumulation in lettuce. J. Plant Physiol., 2010, 167, 1239-1247.
[55]
Ling, T.; Jun, R.; Fangke, Y. Effect of cadmium supply levels to cadmium accumulation by salix. Int. J. Environ. Sci. Technol., 2011, 8(3), 493-500.
[56]
El Muayed, M.; Raja, M.R.; Zhang, X.; MacRenaris, K.W.; Bhatt, S.; Chen, X.; Urbanek, M.; O’Halloran, T.V.; Lowe, W.L. Accumulation of cadmium in insulin-producing β cells. Islets, 2012, 4, 405-416.
[57]
McCormick, J.A.; Ellison, D.H. Distal convoluted tubule. Compr. Physiol., 2015, 5, 45-98.
[58]
Kovacs, G.; Montalbetti, N.; Franz, M.C.; Graeter, S.; Simonin, A.; Hediger, M.A. Human TRPV5 and TRPV6: Key players in cadmium and zinc toxicity. Cell Calcium, 2013, 54, 276-286.
[59]
Dirks, J.H. The kidney and magnesium regulation. Kidney Int., 1983, 23, 771-777.
[60]
Barbier, O.; Jacquillet, G.; Tauc, M.; Cougnon, M.; Poujeol, P. Effect of heavy metals on, and handling by, the kidney. Nephron, Physiol., 2005, 99(4), 105-110.
[61]
Iqbal, K.; Asmat, M. Uses and effects of mercury in medicine and dentistry. J. Ayub Med. Coll. Abbottabad, 2012, 24, 204-207.
[62]
Wong, M.K.; Tan, P.; Wee, Y.C. Heavy metals in some chinese herbal plants. Biol. Trace Elem. Res., 1993, 36, 135-142.
[63]
Genuis, S.J.; Schwalfenberg, G.; Siy, A.K.J.; Rodushkin, I. Toxic element contamination of natural health products and pharmaceutical preparations. PLoS One, 2012, 7(11)e49676
[64]
Zalups, R. Molecular interactions with mercury in the kidney. Pharmacol. Rev., 2000, 52, 113-143.
[65]
Barnett, L.M.A.; Cummings, B.S. Nephrotoxicity and renal pathophysiology: A contemporary perspective. Toxicol. Sci., 2018, 164, 379-390.
[66]
Xiao, W.; Xiao, M.; Fu, Q.; Yu, S.; Shen, H.; Bian, H.; Tang, Y. A portable smart-phone readout device for the detection of mercury contamination based on an aptamer-assay nanosensor. Sensors (Switzerland), 2016, 16, 1871.
[67]
Orr, S.E.; Bridges, C.C. Chronic kidney disease and exposure to nephrotoxic metals. Int. J. Mol. Sci., 2017, 18E1039
[68]
Hac, E.; Krechniak, J. Mercury content in human kidney and hair. Toxicol. Lett., 1996, 88, 56-57.
[69]
Li, L.; Li, B.; Qi, Y.; Jin, Y. Label-free aptamer-based colorimetric detection of mercury ions in aqueous media using unmodified gold nanoparticles as colorimetric probe. Anal. Bioanal. Chem., 2009, 393, 2051-2057.
[70]
An, J.H.; Park, S.J.; Kwon, O.S.; Bae, J.; Jang, J. High-performance flexible graphene aptasensor for mercury detection in mussels. ACS Nano, 2013, 7, 10563-10571.
[71]
Helwa, Y.; Dave, N.; Froidevaux, R.; Samadi, A.; Liu, J. Aptamer-functionalized hydrogel microparticles for fast visual detection of mercury(II) and adenosine. ACS Appl. Mater. Interfaces, 2012, 4(4), 2228-2233.
[72]
Lin, Y.W.; Liu, C.W.; Chang, H.T. Fluorescence detection of mercury(II) and lead(II) ions using aptamer/reporter conjugates. Talanta, 2011, 84, 324-329.
[73]
Gopinath, S.C.B.; Tang, T.H.; Chen, Y.; Citartan, M.; Lakshmipriya, T. Bacterial detection: From microscope to smartphone. Biosens. Bioelectron., 2014, 60, 332-342.
[74]
Kumar, P.; Kumar, A.; Lead, J.R. Nanoparticles in the Indian environment: Known, unknowns and awareness. Environ. Sci. Technol., 2012, 46(13), 7071-7072.
[75]
Prasad, A.; Lead, J.R.; Baalousha, M. An electron microscopy based method for the detection and quantification of nanomaterial number concentration in environmentally relevant media. Sci. Total Environ., 2015, 537, 479-486.
[76]
Arduini, F.; Calvo, J.Q.; Palleschi, G.; Moscone, D.; Amine, A. Bismuth-modified electrodes for lead detection. Trends Analyt. Chem., 2010, 29(11), 1295-1304.
[77]
Baalousha, M.; Stolpe, B.; Lead, J.R. Flow field-flow fractionation for the analysis and characterization of natural colloids and manufactured nanoparticles in environmental systems: A critical review. J. Chromatogr. A, 2011, 1218(27), 4078-4103.
[78]
Sikder, M.; Lead, J.R.; Chandler, G.T.; Baalousha, M. A rapid approach for measuring silver nanoparticle concentration and dissolution in seawater by UV–Vis. Sci. Total Environ., 2018, 618, 597-607.
[79]
Yang, D.; Liu, X.; Zhou, Y.; Luo, L.; Zhang, J.; Huang, A.; Mao, Q.; Chen, X.; Tang, L. Aptamer-based biosensors for detection of lead(II) ion: A review. Anal. Methods, 2017, 9, 1976-1990.
[80]
Meshik, X.; Xu, K.; Dutta, M.; Stroscio, M.A. Optical detection of lead and potassium ions using a quantum-dot-based aptamer nanosensor. IEEE Trans. Nanobioscience, 2014, 13, 161-164.
[81]
Wang, Y.M.; Zhang, H.; Xiong, Y.T.; Zhu, Q.; Ding, Y.C.; Zhao, S.; Zhang, X.H.; Uchimiya, M.; Yuan, X.Y. Leaf aging effects on copper and cadmium transfer along the lettuce-snail food chain. Chemosphere, 2018, 211, 81-88.
[82]
Kellen, E.; Zeegers, M.P.; Hond, E.D.; Buntinx, F. Blood cadmium may be associated with bladder carcinogenesis: The Belgian case-control study on bladder cancer. Cancer Detect. Prev., 2007, 31, 77-82.
[83]
Kollárová, K.; Vatehová, Z.; Kučerová, D.; Lišková, D. Cadmium impact, accumulation and detection in poplar callus cells. Environ. Sci. Pollut. Res., 2017, 24, 15340-15346.
[84]
Goyer, R.A. Mechanisms of lead and cadmium nephrotoxicity. Toxicol. Lett., 1989, 46, 153-162.
[85]
Klaassen, C.D.; Liu, J.; Diwan, B.A. Metallothionein protection of cadmium toxicity. Toxicol. Appl. Pharmacol., 2009, 238(3), 215-220.
[86]
Qian, Q.M.; Wang, Y.S.; Yang, H.X.; Xue, J.H.; Liu, L.; Zhou, B.; Wang, J.C.; Yin, J.C.; Wang, Y.S. Colorimetric detection of metallothioneins using a thymine-rich oligonucleotide-Hg complex and gold nanoparticles. Anal. Biochem., 2013, 436, 45-52.
[87]
Charles, S.; Dubois, F.; Yunus, S.; Vander Donckt, E. Determination by fluorescence spectroscopy of cadmium at the subnanomolar level: Application to seawater. J. Fluoresc., 2000, 10, 99-105.
[88]
Wang, J.; Liu, G.; Polsky, R.; Merkoçi, A. Electrochemical stripping detection of DNA hybridization based on cadmium sulfide nanoparticle tags. Electrochem. Commun., 2002, 4, 722-726.
[89]
Karthikeyan, S.; Hirata, S. Arsenic speciation in environmental samples. Anal. Lett., 2003, 36, 2355-2366.
[90]
Chandra, S.; Saha, R.; Pal, P. Assessment of arsenic toxicity and tolerance characteristics of bean plants (Phaseolus vulgaris) exposed to different species of arsenic. J. Plant Nutr., 2018, 41, 340-347.
[91]
Olson, M.J. Arsenic: Detection; Management Strategies and Health Effects, 2014.
[92]
Figoli, A.; Cassano, A.; Criscuoli, A.; Mozumder, M.S.I.; Uddin, M.T.; Islam, M.A.; Drioli, E. Influence of operating parameters on the arsenic removal by nanofiltration. Water Res., 2010, 44, 97-104.
[93]
Zheng, L.; Kuo, C-C.; Fadrowski, J.; Agnew, J.; Weaver, V.M.; Navas-Acien, A. Arsenic and chronic kidney disease: A systematic review. Curr. Environ. Health Rep., 2014, 1, 192-207.
[94]
Moghimi, N.; Mohapatra, M.; Leung, K.T. Bimetallic nanoparticles for arsenic detection. Anal. Chem., 2015, 87, 5546-5552.
[95]
Agir, S.K.; Kundu, M. Detection and Quantification of Arsenic in Water Using Electronic Tongue. In: 2016 IEEE 1st International
Conference on Control, Measurement and Instrumentation, CMI,
Kolkata, India, 2016, 424-428.
[96]
Taghdisi, S.M.; Danesh, N.M.; Ramezani, M.; Sarreshtehdar Emrani, A.; Abnous, K. A simple and rapid fluorescent aptasensor for ultrasensitive detection of arsenic based on target-induced conformational change of complementary strand of aptamer and silica nanoparticles. Sens. Actuators B Chem., 2018, 256, 472-478.
[97]
Vega-Figueroa, K.; Santillán, J.; Ortiz-Gómez, V.; Ortiz-Quiles, E.O. uiñones-Colón, B.A.; Castilla-Casadiego, D.A.; Almodóvar, J.; Bayro, M.J.; Rodríguez-Martínez, J.A.; Nicolau, E. Aptamer-based impedimetric assay of arsenite in water: Interfacial properties and performance. ACS Omega, 2018, 3, 1437-1444.
[98]
Perumal, V.; Saheed, M.S.M.; Mohamed, N.M.; Saheed, M.S.M.; Murthe, S.S.; Gopinath, S.C.B.; Chiu, J-M. Gold nanorod embedded novel 3D graphene nanocomposite for selective bio-capture in rapid detection of Mycobacterium tuberculosis. Biosens. Bioelectron., 2018, 116, 116-122.
[99]
Ong, C.C.; Gopinath, S.C.B.; Rebecca, L.W.X.; Perumal, V.; Lakshmipriya, T.; Saheed, M.S.M. Diagnosing human blood clotting deficiency. Int. J. Biol. Macromol., 2018, 116, 765-773.
[100]
Taghdisi, S.M.; Emrani, S.S.; Tabrizian, K.; Ramezani, M.; Abnous, K.; Emrani, A.S. Ultrasensitive detection of lead (II) based on fluorescent aptamer-functionalized carbon nanotubes. Environ. Toxicol. Pharmacol., 2014, 37, 1236-1242.
[101]
Wu, Y.; Zhan, S.; Wang, L.; Zhou, P. Selection of a DNA aptamer for cadmium detection based on cationic polymer mediated aggregation of gold nanoparticles. Analyst, 2014, 139, 1550-1561.
[102]
Zhan, S.; Yu, M.; Lv, J.; Wang, L.; Zhou, P. Colorimetric detection of trace arsenic(III) in aqueous solution using arsenic aptamer and gold nanoparticles. Aust. J. Chem., 2014, 67, 813-818.
[103]
Luan, Y.; Lu, A.; Chen, J.; Fu, H.; Xu, L. A label-free aptamer-based fluorescent assay for cadmium detection. Appl. Sci., 2016, 6, 432.
[104]
Ye, B-F.; Zhao, Y-J.; Cheng, Y.; Li, T-T.; Xie, Z-Y.; Zhao, X-W.; Gu, Z-Z. Colorimetric photonic hydrogel aptasensor for the screening of heavy metal ions. Nanoscale, 2012, 4, 5998.
[105]
Wang, H.Y.; Song, Z.Y.; Zhang, H.S.; Chen, S.P. Single-molecule analysis of lead(II)-binding aptamer conformational changes in an α-hemolysin nanopore, and sensitive detection of lead(II). Mikrochim. Acta, 2016, 183, 1003-1010.