[1]
Siddiqui, B.B.; Kardar, M.N.; Ali, T.; Khan, S. Two new and a known compound from Lawsonia inermis. Helvetica Chimica Acta, 2003, 86, 2164e9.
[2]
Latif, A. Isolation of a vitamin-K-activity compound from the leaves of Lawsonia sp. chemical composition of the air-dried leaves. Indian J. Agric. Sci., 1959, 29, 147-150.
[3]
de Lima, O.G. de B Coelho, J.S.; Albuquerque, I.L. Substancias antimicrobianas de plantas superiores. xXXV. ATIVIDADE antimicrobiana e antitumoral de lawsona (2-hidroxi -1,4-naftoquinona) em comparacao com o lapachol (2-hidroxi-3 -(-3-metil- 2-butenil)-1,4-naftoquinona). Recife UnivInstAntibiot Rev., 1971, 1, 21.
[4]
Tripathi, R.D.; Srivastava, H.S.; Dixi, S.N. A fungitoxic principle from the leaves of Lawsonia inermis Lam. Experientia, 1978, 34, 51-52.
[5]
Clark, N.G. The fungicidal activity of substituted1,4-naphthoquinones. Part II: Alkoxy, phenoxy and acyloxy derivatives. Pestic. Sci., 1984, 15, 235.
[6]
Débora, O.F.; Patricia, G.F.; Caroline, D.N. luana P.B.; fernando C. Da silva.; Sonia R.; Vitor F.F. The antifungal activity of naphthoquinones: An integrative review. An. Acad. Bras. Cienc., 2018, 90, 1187-1214.
[7]
Weissenberg, M.; Meisner, J.; Klein, M.; Schaeffler, I.; Eliyahu, M.; Schmutterer, H.; Ascher, K.R.S. Effect of substituent and ring changes in naturally occurring naphthoquinones on the feeding response of larvae of the mexican bean beetle, epilachna varivestis. J. Chem. Ecol., 1997, 23, 3-18.
[8]
Sut, S.; Pavela, R.; Kolarcik, V.; Cappellacci, L.; Petrelli, R.; Maggi, F. Dall’ Acqua, S.; Benelli, G. Identification of onosma visianii roots extract and purified shikonin derivatives as potential acaricidal agents against Tetranychus urticae. Molecules, 2017, 22, 1002.
[9]
Sut, S. Pavela; Kolarcik, V.; Lupidi, G.; Maggi, F.; Dall’ Acqua, S.; Benelli, G. Isobutyrylshikonin and isovalerylshikonin from the roots of Onosma visianii inhibit larval growth of the tobacco c utworm Spodoptera littoralis. Ind. Crops Prod., 2017, 109, 266-273.
[10]
Duroux, L.; Delmotte, F.M.; Lancelin, J.M.; Keravis, G.; Jay-Allemand, C. Insight into naphthoquinone metabolism: Beta-glucosidase-catalysed hydrolysis of hydrojuglone beta-D-glucopyranoside. Biochem. J., 1998, 333, 275-283.
[11]
Talcott, R.E.; Smith, M.T.; Giannini, D.D. Inhibition of microsomal lipid peroxidation by naphthoquinones: structure-activity relationships and possible mechanisms of action. Arch. Biochem. Biophys., 1985, 241, 88.
[12]
Reese, S.; Vidyasagar, A.; Jacobson, L.; Acun, Z.; Esnault, S.; Hullett, D.; Malter, J.S.; Djamali, A. The Pin 1 inhibitor juglone attenuates kidney fibrogenesis via Pin 1- independent mechanisms in the unilateral ureteral occlusion model. Fibrog Tissue Rep., 2010, 3, 1.
[13]
Marchionatti, A.M.; Picotto, G.; Narvaez, C.J.; Welsh, J.; Tolosa de Talamoni, N.G. Antiproliferative action of menadione and 1,25(OH)2D3 on breast cancer cells. J. Steroid Biochem. Mol. Biol., 2009, 113, 227-232.
[14]
Wafaa, S.H.; Alaa El-Din, E.H.; Hanafi, H.Z. Advanced routes in synthesis and reactions of lawsone molecules (2-hydroxy naphthalene-1,4-dione). J. Heterocycl. Chem., 2017, 54, 2155-2196.
[15]
Dhananjay, K.S.; Suaib, L.; Ajay, K.M. Lawsonia inermis L. – A commercially important primaeval dying and medicinal plant with diverse pharmacological activity: A review. Ind. Crops Prod., 2015, 65, 269-286.
[16]
Hooker, S.C. LVII. The constitution of “lapachic acid” (lapachol) and its derivatives. J. Chem. Soc., 1892, 61, 611-650.
[17]
Fieser, L.F. 1,2-naphthoquinone. Org. Synth., 1943, 2, 430.
[18]
Inoue, A.; Kuroki, N.; Konishi, K. Studies on the dyes derived from 1, 4-naphthoquinone studies on the dyes derived from 1, 4-naphthoquinone. Bull. Univ. Osaka Prefect. Ser. A Eng. Nat. Sci., 1959, 8, 31-55.
[19]
Conant, J.B.; Corson, B.B. 1,2-aminonaphthol hydrochloride.[2-Naphthol, 1- amino-, hydrochloride]. Org. Synth., 1937, 17, 9.
[20]
Fieser, L.F. 1-amino-2-naphthol-4-sulfonic acid. Org. Synth., 1943, 2, 42.
[21]
Fieser, L.F., and; Martin, E.L. β-naphthoquinone. Org. Synth., 1955, 3, 465-467.
[22]
de Min, M.; Croux, S.; Tournaire, C.; Hocquaux, M.; Jacquet, B.; Oliveros, E.; Maurette, M.T. Réactivité du superoxyde de Potassium en phase hétérogéne: Oxydation de naphtalénedios en naphtoquinones hydroxylées. Tetrahedron, 1992, 48, 1869-1882.
[23]
Vidril-Robert, D.; Maurette, M.T.; Oliveros, E. Exemple de reaction a l’interface solide-liquide: oxydation de naphtalenediols par le superoxyde de potassium. Tetrahedron Lett., 1984, 25, 529-532.
[24]
Singh, K.N.; Kumar, R.; Shukla, A.K. An efficient C-C bond cleavage of 1,2-diols using tetraethylammonium superoxide. Indian J. Chem. B., 2007, 46B, 1347-1351.
[25]
Villemin, D.; Hammadi, M.; Hachemi, M. Supported metalated phthalocyanine as catalyst for oxidation by molecular oxygen. synthesis of quinones and carbonyl compounds. Synth. Commun., 2002, 32, 1501-1515.
[26]
Osowska-Pacewicka, K.; Alper, H. Oxidation of cyclic ketones catalyzed by polyethylene glycol and rhenium carbonyl under basic and exceptionally mild conditions. J. Org. Chem., 1988, 53, 808-810.
[27]
Hocquaux, M.; Jacquet, B.; Vioril-Robert, D.; Maurette, M.T.; Oliveros, E. Oxydation des tetralones par le superoxyde de potassium solubilise par ether-couronne. Tetrahedron Lett., 1984, 25, 533-536.
[28]
Alessandro, K.J.; Maria, D.V.; Angelo, C.P. Fernando de C.S.; Vitor F.F. Lawsone in organic synthesis. RSC Adv, 2015, 5, 67909-67943.
[29]
Anderson, H.A.; Smith, J.; Thomson, K.H. Naturally occurring quinones. Part VI. Spinochrome D. J. Chem. Soc., 1965, 2141-2144.
[30]
Baillie, A.C.; Thomson, R.H. Quinones. Part VII. New routes to 2-hydroxy-1,4- naphthoquinones. J. Chem. Soc. C, 1966, 2184.
[31]
Li, H.; Liu, R. Synthesis of lawsone as dye. Adv. Mat. Res., 2012, 550-553, 85-88.