Review Article

可逆性:具有细胞脱分化剂和选择性抗癌药双重活性的合成嘌呤。

卷 27, 期 21, 2020

页: [3448 - 3462] 页: 15

弟呕挨: 10.2174/0929867326666190103120725

价格: $65

摘要

数十年来,成年和胚胎干细胞新的治疗应用的发展一直主导着再生医学和组织工程。然而,自2006年以来,诱导多能干细胞(iPSC)已成为该领域的中心问题,因为它们有望克服其他干细胞类型的一些局限性。尽管如此,多年来,甚至在产生iPSC之前,还尝试了其他有前途的成年细胞重编程方法。尤其是在发现iPSC的两年前,合成大型有机化合物库的可能性以及开发高通量筛选以快速测试其生物学活性的可能性,使人们得以鉴定2,6-二取代嘌呤,被称为可逆的,被证明能够将成年细胞重编程为祖细胞样状态。自从发现以来,已经证实了可逆在不同细胞类型上的作用,并且对其作用机理的多项研究表明,它在抑制与细胞周期调控和胞质分裂有关的几种激酶的抑制活性中起着核心作用。这些关键特征及其化学性质表明该分子有可能用作抗癌药。值得注意的是,可逆性药物在体外对几种肿瘤细胞系表现出有效的细胞毒活性,并且在降低体内肿瘤的进展和转移方面具有显著作用。因此,自发现以来已有15年的时间,本综述旨在批判性地总结现有知识,以阐明可逆性作为去分化剂和抗癌药的双重作用。

关键词: 逆转,去分化,重编程,重新定位,抗癌,抗肿瘤药物。

[1]
Hall, W.S.; Eubank, M.D. The regeneration of the blood. J. Exp. Med., 1896, 1(4), 656-676.
[http://dx.doi.org/10.1084/jem.1.4.656] [PMID: 19866819]
[2]
Alison, M.R.; Poulsom, R.; Forbes, S.; Wright, N.A. An introduction to stem cells. J. Pathol., 2002, 197(4), 419-423.
[http://dx.doi.org/10.1002/path.1187] [PMID: 12115858]
[3]
Blau, H.M.; Brazelton, T.R.; Weimann, J.M. The evolving concept of a stem cell: entity or function? Cell, 2001, 105(7), 829-841.
[http://dx.doi.org/10.1016/S0092-8674(01)00409-3] [PMID: 11439179]
[4]
Boese, A.C.; Le, Q.E.; Pham, D.; Hamblin, M.H.; Lee, J.P. Neural stem cell therapy for subacute and chronic ischemic stroke. Stem Cell Res. Ther., 2018, 9(1), 154.
[http://dx.doi.org/10.1186/s13287-018-0913-2] [PMID: 29895321]
[5]
Iansante, V.; Chandrashekran, A.; Dhawan, A. Cell-based liver therapies: past, present and future. Philos. Trans. R. Soc. Lond. B Biol. Sci., 2018, 373(1750), 20170229
[http://dx.doi.org/10.1098/rstb.2017.0229]
[6]
Menasché, P. Cell therapy trials for heart regeneration - lessons learned and future directions. Nat. Rev. Cardiol., 2018, 15(11), 659-671.
[http://dx.doi.org/10.1038/s41569-018-0013-0] [PMID: 29743563]
[7]
Murray, I.R.; West, C.C.; Hardy, W.R.; James, A.W.; Park, T.S.; Nguyen, A.; Tawonsawatruk, T.; Lazzari, L.; Soo, C.; Péault, B. Natural history of mesenchymal stem cells, from vessel walls to culture vessels. Cell. Mol. Life Sci., 2014, 71(8), 1353-1374.
[http://dx.doi.org/10.1007/s00018-013-1462-6] [PMID: 24158496]
[8]
Smith, S.; Neaves, W.; Teitelbaum, S. Adult versus embryonic stem cells: treatments. Science, 2007, 316(5830), 1422-1423.
[http://dx.doi.org/10.1126/science.316.5830.1422b] [PMID: 17556566]
[9]
Bianco, P. “Mesenchymal” stem cells. Annu. Rev. Cell Dev. Biol., 2014, 30, 677-704.
[http://dx.doi.org/10.1146/annurev-cellbio-100913-013132] [PMID: 25150008]
[10]
Cagliani, J.; Grande, D.; Molmenti, E.P.; Miller, E.J.; Rilo, H.L.R. Immunomodulation by mesenchymal stromal cells and their clinical applications. J Stem Cell Regen Biol, 2017, 3(2)
[http://dx.doi.org/10.15436/2471-0598.17.022] [PMID: 29104965]
[11]
Agarwal, S. Cellular reprogramming. Methods Enzymol., 2006, 420, 265-283.
[http://dx.doi.org/10.1016/S0076-6879(06)20012-0] [PMID: 17161701]
[12]
Cowan, C.A.; Atienza, J.; Melton, D.A.; Eggan, K. Nuclear reprogramming of somatic cells after fusion with human embryonic stem cells. Science, 2005, 309(5739), 1369-1373.
[http://dx.doi.org/10.1126/science.1116447] [PMID: 16123299]
[13]
Hochedlinger, K.; Jaenisch, R. Nuclear reprogramming and pluripotency. Nature, 2006, 441(7097), 1061-1067.
[http://dx.doi.org/10.1038/nature04955] [PMID: 16810240]
[14]
Tada, M.; Takahama, Y.; Abe, K.; Nakatsuji, N.; Tada, T. Nuclear reprogramming of somatic cells by in vitro hybridization with ES cells. Curr. Biol., 2001, 11(19), 1553-1558.
[http://dx.doi.org/10.1016/S0960-9822(01)00459-6] [PMID: 11591326]
[15]
Wilmut, I.; Schnieke, A.E.; McWhir, J.; Kind, A.J.; Campbell, K.H. Viable offspring derived from fetal and adult mammalian cells. Nature, 1997, 385(6619), 810-813.
[http://dx.doi.org/10.1038/385810a0] [PMID: 9039911]
[16]
Takahashi, K.; Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 2006, 126(4), 663-676.
[http://dx.doi.org/10.1016/j.cell.2006.07.024] [PMID: 16904174]
[17]
Ding, S.; Schultz, P.G. A role for chemistry in stem cell biology. Nat. Biotechnol., 2004, 22(7), 833-840.
[http://dx.doi.org/10.1038/nbt987] [PMID: 15229546]
[18]
Bain, G.; Kitchens, D.; Yao, M.; Huettner, J.E.; Gottlieb, D.I. Embryonic stem cells express neuronal properties in vitro. Dev. Biol., 1995, 168(2), 342-357.
[http://dx.doi.org/10.1006/dbio.1995.1085] [PMID: 7729574]
[19]
Burlacu, A. Can 5-azacytidine convert the adult stem cells into cardiomyocytes? A brief overview. Arch. Physiol. Biochem., 2006, 112(4-5), 260-264.
[http://dx.doi.org/10.1080/13813450601094631] [PMID: 17178600]
[20]
Xu, Y.; Shi, Y.; Ding, S. A chemical approach to stem-cell biology and regenerative medicine. Nature, 2008, 453(7193), 338-344.
[http://dx.doi.org/10.1038/nature07042] [PMID: 18480815]
[21]
Rosania, G.R.; Chang, Y.T.; Perez, O.; Sutherlin, D.; Dong, H.; Lockhart, D.J.; Schultz, P.G. Myoseverin, a microtubule-binding molecule with novel cellular effects. Nat. Biotechnol., 2000, 18(3), 304-308.
[http://dx.doi.org/10.1038/73753] [PMID: 10700146]
[22]
Duckmanton, A.; Kumar, A.; Chang, Y.T.; Brockes, J.P. A single-cell analysis of myogenic dedifferentiation induced by small molecules. Chem. Biol., 2005, 12(10), 1117-1126.
[http://dx.doi.org/10.1016/j.chembiol.2005.07.011] [PMID: 16242654]
[23]
Anastasia, L.; Sampaolesi, M.; Papini, N.; Oleari, D.; Lamorte, G.; Tringali, C.; Monti, E.; Galli, D.; Tettamanti, G.; Cossu, G.; Venerando, B. Reversine-treated fibroblasts acquire myogenic competence in vitro and in regenerating skeletal muscle. Cell Death Differ., 2006, 13(12), 2042-2051.
[http://dx.doi.org/10.1038/sj.cdd.4401958] [PMID: 16729034]
[24]
Chen, S.; Zhang, Q.; Wu, X.; Schultz, P.G.; Ding, S. Dedifferentiation of lineage-committed cells by a small molecule. J. Am. Chem. Soc., 2004, 126(2), 410-411.
[http://dx.doi.org/10.1021/ja037390k] [PMID: 14719906]
[25]
Gey, C.; Giannis, A. Small molecules, big plans--can low-molecular-weight compounds control human regeneration? Angew. Chem. Int. Ed. Engl., 2004, 43(31), 3998-4000.
[http://dx.doi.org/10.1002/anie.200460346] [PMID: 15300685]
[26]
Anastasia, L.; Piccoli, M.; Garatti, A.; Conforti, E.; Scaringi, R.; Bergante, S.; Castelvecchio, S.; Venerando, B.; Menicanti, L.; Tettamanti, G. Cell reprogramming: a new chemical approach to stem cell biology and tissue regeneration. Curr. Pharm. Biotechnol., 2011, 12(2), 146-150.
[http://dx.doi.org/10.2174/138920111794295828] [PMID: 21044013]
[27]
Barker, R.A.; Götz, M.; Parmar, M. New approaches for brain repair-from rescue to reprogramming. Nature, 2018, 557(7705), 329-334.
[http://dx.doi.org/10.1038/s41586-018-0087-1] [PMID: 29769670]
[28]
Ghiroldi, A.; Piccoli, M.; Ciconte, G.; Pappone, C.; Anastasia, L. Regenerating the human heart: direct reprogramming strategies and their current limitations. Basic Res. Cardiol., 2017, 112(6), 68.
[http://dx.doi.org/10.1007/s00395-017-0655-9] [PMID: 29079873]
[29]
Papaccio, F.; Paino, F.; Regad, T.; Papaccio, G.; Desiderio, V.; Tirino, V. Concise review: Cancer cells, cancer stem cells, and mesenchymal stem cells: Influence in cancer development. Stem Cells Transl. Med., 2017, 6(12), 2115-2125.
[http://dx.doi.org/10.1002/sctm.17-0138] [PMID: 29072369]
[30]
Yamada, Y.; Haga, H.; Yamada, Y. Concise review: dedifferentiation meets cancer development: proof of concept for epigenetic cancer. Stem Cells Transl. Med., 2014, 3(10), 1182-1187.
[http://dx.doi.org/10.5966/sctm.2014-0090] [PMID: 25122691]
[31]
Visvader, J.E. Cells of origin in cancer. Nature, 2011, 469(7330), 314-322.
[http://dx.doi.org/10.1038/nature09781] [PMID: 21248838]
[32]
Friedmann-Morvinski, D.; Verma, I.M. Dedifferentiation and reprogramming: origins of cancer stem cells. EMBO Rep., 2014, 15(3), 244-253.
[http://dx.doi.org/10.1002/embr.201338254] [PMID: 24531722]
[33]
Hsieh, T.C.; Traganos, F.; Darzynkiewicz, Z.; Wu, J.M. The 2,6-disubstituted purine reversine induces growth arrest and polyploidy in human cancer cells. Int. J. Oncol., 2007, 31(6), 1293-1300.
[http://dx.doi.org/10.3892/ijo.31.6.1293] [PMID: 17982654]
[34]
Kim, W.H.; Shen, H.; Jung, D.W.; Williams, D.R. Some leopards can change their spots: potential repositioning of stem cell reprogramming compounds as anti-cancer agents. Cell Biol. Toxicol., 2016, 32(3), 157-168.
[http://dx.doi.org/10.1007/s10565-016-9333-1] [PMID: 27156576]
[35]
Brockes, J.P.; Kumar, A. Plasticity and reprogramming of differentiated cells in amphibian regeneration. Nat. Rev. Mol. Cell Biol., 2002, 3(8), 566-574.
[http://dx.doi.org/10.1038/nrm881] [PMID: 12154368]
[36]
Poss, K.D.; Wilson, L.G.; Keating, M.T. Heart regeneration in zebrafish. Science, 2002, 298(5601), 2188-2190.
[http://dx.doi.org/10.1126/science.1077857] [PMID: 12481136]
[37]
Grafi, G. The complexity of cellular dedifferentiation: implications for regenerative medicine. Trends Biotechnol., 2009, 27(6), 329-332.
[http://dx.doi.org/10.1016/j.tibtech.2009.02.007] [PMID: 19395104]
[38]
Brockes, J.P.; Kumar, A. Comparative aspects of animal regeneration. Annu. Rev. Cell Dev. Biol., 2008, 24, 525-549.
[http://dx.doi.org/10.1146/annurev.cellbio.24.110707.175336] [PMID: 18598212]
[39]
Ding, S.; Gray, N.S.; Wu, X.; Ding, Q.; Schultz, P.G. A combinatorial scaffold approach toward kinase-directed heterocycle libraries. J. Am. Chem. Soc., 2002, 124(8), 1594-1596.
[http://dx.doi.org/10.1021/ja0170302] [PMID: 11853431]
[40]
Kim, S.; Rosania, G.R.; Chang, Y.T. Dedifferentiation? What’s next? Mol. Interv., 2004, 4(2), 83-85.
[http://dx.doi.org/10.1124/mi.4.2.5] [PMID: 15087481]
[41]
Fux, C.; Mitta, B.; Kramer, B.P.; Fussenegger, M. Dual-regulated expression of C/EBP-alpha and BMP-2 enables differential differentiation of C2C12 cells into adipocytes and osteoblasts. Nucleic Acids Res., 2004, 32(1), e1
[http://dx.doi.org/10.1093/nar/gnh001] [PMID: 14704358]
[42]
Holst, D.; Luquet, S.; Kristiansen, K.; Grimaldi, P.A. Roles of peroxisome proliferator-activated receptors delta and gamma in myoblast transdifferentiation. Exp. Cell Res., 2003, 288(1), 168-176.
[http://dx.doi.org/10.1016/S0014-4827(03)00179-4] [PMID: 12878168]
[43]
Katagiri, T.; Yamaguchi, A.; Komaki, M.; Abe, E.; Takahashi, N.; Ikeda, T.; Rosen, V.; Wozney, J.M.; Fujisawa-Sehara, A.; Suda, T. Bone morphogenetic protein-2 converts the differentiation pathway of C2C12 myoblasts into the osteoblast lineage. J. Cell Biol., 1994, 127(6 Pt 1), 1755-1766.
[http://dx.doi.org/10.1083/jcb.127.6.1755] [PMID: 7798324]
[44]
Chen, S.; Takanashi, S.; Zhang, Q.; Xiong, W.; Zhu, S.; Peters, E.C.; Ding, S.; Schultz, P.G. Reversine increases the plasticity of lineage-committed mammalian cells. Proc. Natl. Acad. Sci. USA, 2007, 104(25), 10482-10487.
[http://dx.doi.org/10.1073/pnas.0704360104] [PMID: 17566101]
[45]
Kolch, W. Coordinating ERK/MAPK signalling through scaffolds and inhibitors. Nat. Rev. Mol. Cell Biol., 2005, 6(11), 827-837.
[http://dx.doi.org/10.1038/nrm1743] [PMID: 16227978]
[46]
Ait-Si-Ali, S.; Carlisi, D.; Ramirez, S.; Upegui-Gonzalez, L.C.; Duquet, A.; Robin, P.; Rudkin, B.; Harel-Bellan, A.; Trouche, D. Phosphorylation by p44 MAP Kinase/ERK1 stimulates CBP histone acetyl transferase activity in vitro. Biochem. Biophys. Res. Commun., 1999, 262(1), 157-162.
[http://dx.doi.org/10.1006/bbrc.1999.1132] [PMID: 10448085]
[47]
Kawasaki, H.; Schiltz, L.; Chiu, R.; Itakura, K.; Taira, K.; Nakatani, Y.; Yokoyama, K.K. ATF-2 has intrinsic histone acetyltransferase activity which is modulated by phosphorylation. Nature, 2000, 405(6783), 195-200.
[http://dx.doi.org/10.1038/35012097] [PMID: 10821277]
[48]
Shan, S.W.; Tang, M.K.; Chow, P.H.; Maroto, M.; Cai, D.Q.; Lee, K.K. Induction of growth arrest and polycomb gene expression by reversine allows C2C12 cells to be reprogrammed to various differentiated cell types. Proteomics, 2007, 7(23), 4303-4316.
[http://dx.doi.org/10.1002/pmic.200700636] [PMID: 17973295]
[49]
Chou, R.H.; Chiu, L.; Yu, Y.L.; Shyu, W.C. The potential roles of EZH2 in regenerative medicine. Cell Transplant., 2015, 24(3), 313-317.
[http://dx.doi.org/10.3727/096368915X686823] [PMID: 25647295]
[50]
Simon, J.A.; Kingston, R.E. Mechanisms of polycomb gene silencing: knowns and unknowns. Nat. Rev. Mol. Cell Biol., 2009, 10(10), 697-708.
[http://dx.doi.org/10.1038/nrm2763] [PMID: 19738629]
[51]
Fania, C.; Anastasia, L.; Vasso, M.; Papini, N.; Capitanio, D.; Venerando, B.; Gelfi, C. Proteomic signature of reversine-treated murine fibroblasts by 2-D difference gel electrophoresis and MS: possible associations with cell signalling networks. Electrophoresis, 2009, 30(12), 2193-2206.
[http://dx.doi.org/10.1002/elps.200800800] [PMID: 19582720]
[52]
Thomas, S.; Bonchev, D. A survey of current software for network analysis in molecular biology. Hum. Genomics, 2010, 4(5), 353-360.
[http://dx.doi.org/10.1186/1479-7364-4-5-353] [PMID: 20650822]
[53]
Lee, E.K.; Bae, G.U.; You, J.S.; Lee, J.C.; Jeon, Y.J.; Park, J.W.; Park, J.H.; Ahn, S.H.; Kim, Y.K.; Choi, W.S.; Kang, J-S.; Han, G.; Han, J-W. Reversine increases the plasticity of lineage-committed cells toward neuroectodermal lineage. J. Biol. Chem., 2009, 284(5), 2891-2901.
[http://dx.doi.org/10.1074/jbc.M804055200] [PMID: 19015271]
[54]
Saraiya, M.; Nasser, R.; Zeng, Y.; Addya, S.; Ponnappan, R.K.; Fortina, P.; Anderson, D.G.; Albert, T.J.; Shapiro, I.M.; Risbud, M.V. Reversine enhances generation of progenitor-like cells by dedifferentiation of annulus fibrosus cells. Tissue Eng. Part A, 2010, 16(4), 1443-1455.
[http://dx.doi.org/10.1089/ten.tea.2009.0343] [PMID: 19947906]
[55]
Chen, J.F.; Mandel, E.M.; Thomson, J.M.; Wu, Q.; Callis, T.E.; Hammond, S.M.; Conlon, F.L.; Wang, D.Z. The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nat. Genet., 2006, 38(2), 228-233.
[http://dx.doi.org/10.1038/ng1725] [PMID: 16380711]
[56]
Kim, M.; Yi, S.A.; Lee, H.; Bang, S.Y.; Park, E.K.; Lee, M.G.; Nam, K.H.; Yoo, J.H.; Lee, D.H.; Ryu, H.W.; Kwon, S.H.; Han, J.W. Reversine induces multipotency of lineage-committed cells through epigenetic silencing of miR-133a. Biochem. Biophys. Res. Commun., 2014, 445(1), 255-262.
[http://dx.doi.org/10.1016/j.bbrc.2014.02.002] [PMID: 24513286]
[57]
D’Alise, A.M.; Amabile, G.; Iovino, M.; Di Giorgio, F.P.; Bartiromo, M.; Sessa, F.; Villa, F.; Musacchio, A.; Cortese, R. Reversine, a novel Aurora kinases inhibitor, inhibits colony formation of human acute myeloid leukemia cells. Mol. Cancer Ther., 2008, 7(5), 1140-1149.
[http://dx.doi.org/10.1158/1535-7163.MCT-07-2051] [PMID: 18483302]
[58]
Amabile, G.; D’Alise, A.M.; Iovino, M.; Jones, P.; Santaguida, S.; Musacchio, A.; Taylor, S.; Cortese, R. The Aurora B kinase activity is required for the maintenance of the differentiated state of murine myoblasts. Cell Death Differ., 2009, 16(2), 321-330.
[http://dx.doi.org/10.1038/cdd.2008.156] [PMID: 18974773]
[59]
Giet, R.; Glover, D.M. Drosophila aurora B kinase is required for histone H3 phosphorylation and condensin recruitment during chromosome condensation and to organize the central spindle during cytokinesis. J. Cell Biol., 2001, 152(4), 669-682.
[http://dx.doi.org/10.1083/jcb.152.4.669] [PMID: 11266459]
[60]
Qu, G.; von Schroeder, H.P. Preliminary evidence for the dedifferentiation of RAW 264.7 cells into mesenchymal progenitor-like cells by a purine analog. Tissue Eng. Part A, 2012, 18(17-18), 1890-1901.
[http://dx.doi.org/10.1089/ten.tea.2010.0692] [PMID: 22519969]
[61]
Li, X.; Guo, Y.; Yao, Y.; Hua, J.; Ma, Y.; Liu, C.; Guan, W. Reversine increases the plasticity of long-term cryopreserved fibroblasts to multipotent progenitor cells through activation of Oct4. Int. J. Biol. Sci., 2016, 12(1), 53-62.
[http://dx.doi.org/10.7150/ijbs.12199] [PMID: 26722217]
[62]
Conforti, E.; Arrigoni, E.; Piccoli, M.; Lopa, S.; de Girolamo, L.; Ibatici, A.; Di Matteo, A.; Tettamanti, G.; Brini, A.T.; Anastasia, L. Reversine increases multipotent human mesenchymal cells differentiation potential. J. Biol. Regul. Homeost. Agents, 2011, 25(Suppl. 2), S25-S33.
[PMID: 22051168]
[63]
Lv, X.; Zhu, H.; Bai, Y.; Chu, Z.; Hu, Y.; Cao, H.; Liu, C.; He, X.; Peng, S.; Gao, Z.; Yang, C.; Hua, J. Reversine promotes porcine muscle derived stem cells (PMDSCs) differentiation into female germ-like cells. J. Cell. Biochem., 2012, 113(12), 3629-3642.
[http://dx.doi.org/10.1002/jcb.24296] [PMID: 22821411]
[64]
Pikir, B.S.; Susilowati, H.; Hendrianto, E.; Abdulrantam, F. Reversin increase the plasticity of bone marrow-derived mesenchymal stem cell for generation of cardiomyocyte in vitro. Acta Med. Indones., 2012, 44(1), 23-27.
[PMID: 22451181]
[65]
Soltani, L.; Rahmani, H.R.; Daliri Joupari, M.; Ghaneialvar, H.; Mahdavi, A.H.; Shamsara, M. Ovine fetal mesenchymal stem cell differentiation to cardiomyocytes, effects of co-culture, role of small molecules; reversine and 5-azacytidine. Cell Biochem. Funct., 2016, 34(4), 250-261.
[http://dx.doi.org/10.1002/cbf.3187] [PMID: 27121349]
[66]
Jung, D.W.; Williams, D.R. Novel chemically defined approach to produce multipotent cells from terminally differentiated tissue syncytia. ACS Chem. Biol., 2011, 6(6), 553-562.
[http://dx.doi.org/10.1021/cb2000154] [PMID: 21322636]
[67]
Kim, W.H.; Jung, D.W.; Kim, J.; Im, S.H.; Hwang, S.Y.; Williams, D.R. Small molecules that recapitulate the early steps of urodele amphibian limb regeneration and confer multipotency. ACS Chem. Biol., 2012, 7(4), 732-743.
[http://dx.doi.org/10.1021/cb200532v] [PMID: 22270490]
[68]
Sharma, S.; Mehndiratta, S.; Kumar, S.; Singh, J.; Bedi, P.M.; Nepali, K. Purine analogues as kinase inhibitors: a review. Recent Patents Anticancer Drug Discov., 2015, 10(3), 308-341.
[http://dx.doi.org/10.2174/1574892810666150617112230] [PMID: 26081925]
[69]
Lin, J.; Haffner, M.C.; Zhang, Y.; Lee, B.H.; Brennen, W.N.; Britton, J.; Kachhap, S.K.; Shim, J.S.; Liu, J.O.; Nelson, W.G.; Yegnasubramanian, S.; Carducci, M.A. Disulfiram is a DNA demethylating agent and inhibits prostate cancer cell growth. Prostate, 2011, 71(4), 333-343.
[http://dx.doi.org/10.1002/pros.21247] [PMID: 20809552]
[70]
Voelker, R. International group seeks to dispel incontinence “taboo”. JAMA, 1998, 280(11), 951-953.
[http://dx.doi.org/10.1001/jama.280.11.951] [PMID: 9749464]
[71]
Mazor, M.; Kawano, Y.; Zhu, H.; Waxman, J.; Kypta, R.M. Inhibition of glycogen synthase kinase-3 represses androgen receptor activity and prostate cancer cell growth. Oncogene, 2004, 23(47), 7882-7892.
[http://dx.doi.org/10.1038/sj.onc.1208068] [PMID: 15361837]
[72]
De Souza, C.; Chatterji, B.P. HDAC inhibitors as novel anti-cancer therapeutics. Recent Patents Anticancer Drug Discov., 2015, 10(2), 145-162.
[http://dx.doi.org/10.2174/1574892810666150317144511] [PMID: 25782916]
[73]
Santaguida, S.; Tighe, A.; D’Alise, A.M.; Taylor, S.S.; Musacchio, A. Dissecting the role of MPS1 in chromosome biorientation and the spindle checkpoint through the small molecule inhibitor reversine. J. Cell Biol., 2010, 190(1), 73-87.
[http://dx.doi.org/10.1083/jcb.201001036] [PMID: 20624901]
[74]
Libouban, M.A.A.; de Roos, J.A.D.M.; Uitdehaag, J.C.M.; Willemsen-Seegers, N.; Mainardi, S.; Dylus, J.; de Man, J.; Tops, B.; Meijerink, J.P.P.; Storchová, Z.; Buijsman, R.C.; Medema, R.H.; Zaman, G.J.R. Stable aneuploid tumors cells are more sensitive to TTK inhibition than chromosomally unstable cell lines. Oncotarget, 2017, 8(24), 38309-38325.
[http://dx.doi.org/10.18632/oncotarget.16213] [PMID: 28415765]
[75]
Hiruma, Y.; Koch, A.; Dharadhar, S.; Joosten, R.P.; Perrakis, A. Structural basis of reversine selectivity in inhibiting Mps1 more potently than aurora B kinase. Proteins, 2016, 84(12), 1761-1766.
[http://dx.doi.org/10.1002/prot.25174] [PMID: 27699881]
[76]
Hua, S.C.; Chang, T.C.; Chen, H.R.; Lu, C.H.; Liu, Y.W.; Chen, S.H.; Yu, H.I.; Chang, Y.P.; Lee, Y.R. Reversine, a 2,6-disubstituted purine, as an anti-cancer agent in differentiated and undifferentiated thyroid cancer cells. Pharm. Res., 2012, 29(7), 1990-2005.
[http://dx.doi.org/10.1007/s11095-012-0727-3] [PMID: 22477067]
[77]
Qin, H.X.; Yang, J.; Cui, H.K.; Li, S.P.; Zhang, W.; Ding, X.L.; Xia, Y.H. Synergistic antitumor activity of reversine combined with aspirin in cervical carcinoma in vitro and in vivo. Cytotechnology, 2013, 65(4), 643-653.
[http://dx.doi.org/10.1007/s10616-012-9520-8] [PMID: 23475158]
[78]
Kuo, C.H.; Lu, Y.C.; Tseng, Y.S.; Shi, C.S.; Chen, S.H.; Chen, P.T.; Wu, F.L.; Chang, Y.P.; Lee, Y.R. Reversine induces cell cycle arrest, polyploidy, and apoptosis in human breast cancer cells. Breast Cancer, 2014, 21(3), 358-369.
[http://dx.doi.org/10.1007/s12282-012-0400-z] [PMID: 22926505]
[79]
Rodrigues Alves, A.P.; Machado-Neto, J.A.; Scheucher, P.S.; Paiva, H.H.; Simões, B.P.; Rego, E.M.; Traina, F. Reversine triggers mitotic catastrophe and apoptosis in K562 cells. Leuk. Res., 2016, 48, 26-31.
[http://dx.doi.org/10.1016/j.leukres.2016.06.011] [PMID: 27447890]
[80]
Cheng, L.; Wang, H.; Guo, K.; Wang, Z.; Zhang, Z.; Shen, C.; Chen, L.; Lin, J. Reversine, a substituted purine, exerts an inhibitive effect on human renal carcinoma cells via induction of cell apoptosis and polyploidy. OncoTargets Ther., 2018, 11, 1025-1035.
[http://dx.doi.org/10.2147/OTT.S158198] [PMID: 29520153]
[81]
Lu, Y.C.; Lee, Y.R.; Liao, J.D.; Lin, C.Y.; Chen, Y.Y.; Chen, P.T.; Tseng, Y.S. Reversine induced multinucleated cells, cell apoptosis and autophagy in human non-small cell lung cancer cells. PLoS One, 2016, 11(7), e0158587
[http://dx.doi.org/10.1371/journal.pone.0158587] [PMID: 27385117]
[82]
Piccoli, M.; Palazzolo, G.; Conforti, E.; Lamorte, G.; Papini, N.; Creo, P.; Fania, C.; Scaringi, R.; Bergante, S.; Tringali, C.; Roncoroni, L.; Mazzoleni, S.; Doneda, L.; Galli, R.; Venerando, B.; Tettamanti, G.; Gelfi, C.; Anastasia, L. The synthetic purine reversine selectively induces cell death of cancer cells. J. Cell. Biochem., 2012, 113(10), 3207-3217.
[http://dx.doi.org/10.1002/jcb.24197] [PMID: 22615034]
[83]
Fang, C.Y.; Chen, J.S.; Chang, S.K.; Shen, C.H. Reversine induces autophagic cell death through the AMP-activated protein kinase pathway in urothelial carcinoma cells. Anticancer Drugs, 2018, 29(1), 29-39.
[http://dx.doi.org/10.1097/CAD.0000000000000563] [PMID: 28984683]
[84]
Lee, Y.R.; Wu, W.C.; Ji, W.T.; Chen, J.Y.; Cheng, Y.P.; Chiang, M.K.; Chen, H.R. Reversine suppresses oral squamous cell carcinoma via cell cycle arrest and concomitantly apoptosis and autophagy. J. Biomed. Sci., 2012, 19, 9.
[http://dx.doi.org/10.1186/1423-0127-19-9] [PMID: 22283874]
[85]
Lu, C.H.; Liu, Y.W.; Hua, S.C.; Yu, H.I.; Chang, Y.P.; Lee, Y.R. Autophagy induction of reversine on human follicular thyroid cancer cells. Biomed. Pharmacother., 2012, 66(8), 642-647.
[http://dx.doi.org/10.1016/j.biopha.2012.08.001] [PMID: 23089471]
[86]
Gozuacik, D.; Kimchi, A. Autophagy as a cell death and tumor suppressor mechanism. Oncogene, 2004, 23(16), 2891-2906.
[http://dx.doi.org/10.1038/sj.onc.1207521] [PMID: 15077152]
[87]
Lorin, S.; Hamaï, A.; Mehrpour, M.; Codogno, P. Autophagy regulation and its role in cancer. Semin. Cancer Biol., 2013, 23(5), 361-379.
[http://dx.doi.org/10.1016/j.semcancer.2013.06.007] [PMID: 23811268]
[88]
Paquette, M.; El-Houjeiri, L.; Pause, A. mTOR pathways in cancer and autophagy. Cancers (Basel), 2018, 10(1), E18
[http://dx.doi.org/10.3390/cancers10010018] [PMID: 29329237]
[89]
Zhang, S.; Li, J.; Zhou, G.; Mu, D.; Yan, J.; Xing, J.; Yao, Z.; Sheng, H.; Li, D.; Lv, C.; Sun, B.; Hong, Q.; Guo, H. Aurora-A regulates autophagy through the Akt pathway in human prostate cancer. Cancer Biomark., 2017, 19(1), 27-34.
[http://dx.doi.org/10.3233/CBM-160238] [PMID: 28269749]
[90]
Bijian, K.; Lougheed, C.; Su, J.; Xu, B.; Yu, H.; Wu, J.H.; Riccio, K.; Alaoui-Jamali, M.A. Targeting focal adhesion turnover in invasive breast cancer cells by the purine derivative reversine. Br. J. Cancer, 2013, 109(11), 2810-2818.
[http://dx.doi.org/10.1038/bjc.2013.675] [PMID: 24169345]
[91]
Romain, C.V.; Paul, P.; Lee, S.; Qiao, J.; Chung, D.H. Targeting aurora kinase A inhibits hypoxia-mediated neuroblastoma cell tumorigenesis. Anticancer Res., 2014, 34(5), 2269-2274.
[PMID: 24778030]
[92]
McMillin, D.W.; Delmore, J.; Weisberg, E.; Negri, J.M.; Geer, D.C.; Klippel, S.; Mitsiades, N.; Schlossman, R.L.; Munshi, N.C.; Kung, A.L.; Griffin, J.D.; Richardson, P.G.; Anderson, K.C.; Mitsiades, C.S. Tumor cell-specific bioluminescence platform to identify stroma-induced changes to anticancer drug activity. Nat. Med., 2010, 16(4), 483-489.
[http://dx.doi.org/10.1038/nm.2112] [PMID: 20228816]
[93]
Shen, K.; Luk, S.; Hicks, D.F.; Elman, J.S.; Bohr, S.; Iwamoto, Y.; Murray, R.; Pena, K.; Wang, F.; Seker, E.; Weissleder, R.; Yarmush, M.L.; Toner, M.; Sgroi, D.; Parekkadan, B. Resolving cancer-stroma interfacial signalling and interventions with micropatterned tumour-stromal assays. Nat. Commun., 2014, 5, 5662.
[http://dx.doi.org/10.1038/ncomms6662] [PMID: 25489927]
[94]
Ertel, A.; Verghese, A.; Byers, S.W.; Ochs, M.; Tozeren, A. Pathway-specific differences between tumor cell lines and normal and tumor tissue cells. Mol. Cancer, 2006, 5(1), 55.
[http://dx.doi.org/10.1186/1476-4598-5-55] [PMID: 17081305]
[95]
Stein, W.D.; Litman, T.; Fojo, T.; Bates, S.E. A Serial Analysis of Gene Expression (SAGE) database analysis of chemosensitivity: comparing solid tumors with cell lines and comparing solid tumors from different tissue origins. Cancer Res., 2004, 64(8), 2805-2816.
[http://dx.doi.org/10.1158/0008-5472.CAN-03-3383] [PMID: 15087397]
[96]
Gillet, J.P.; Calcagno, A.M.; Varma, S.; Marino, M.; Green, L.J.; Vora, M.I.; Patel, C.; Orina, J.N.; Eliseeva, T.A.; Singal, V.; Padmanabhan, R.; Davidson, B.; Ganapathi, R.; Sood, A.K.; Rueda, B.R.; Ambudkar, S.V.; Gottesman, M.M. Redefining the relevance of established cancer cell lines to the study of mechanisms of clinical anti-cancer drug resistance. Proc. Natl. Acad. Sci. USA, 2011, 108(46), 18708-18713.
[http://dx.doi.org/10.1073/pnas.1111840108] [PMID: 22068913]
[97]
Yung, W.K.; Shapiro, J.R.; Shapiro, W.R. Heterogeneous chemosensitivities of subpopulations of human glioma cells in culture. Cancer Res., 1982, 42(3), 992-998.
[PMID: 7199383]
[98]
Iwadate, Y.; Mochizuki, S.; Fujimoto, S.; Namba, H.; Sakiyama, S.; Tagawa, M.; Yamaura, A. Alteration of CDKN2/p16 in human astrocytic tumors is related with increased susceptibility to antimetabolite anticancer agents. Int. J. Oncol., 2000, 17(3), 501-505.
[http://dx.doi.org/10.3892/ijo.17.3.501] [PMID: 10938390]
[99]
Jackson, S.E.; Chester, J.D. Personalised cancer medicine. Int. J. Cancer, 2015, 137(2), 262-266.
[http://dx.doi.org/10.1002/ijc.28940] [PMID: 24789362]
[100]
Jemaà, M.; Manic, G.; Lledo, G.; Lissa, D.; Reynes, C.; Morin, N.; Chibon, F.; Sistigu, A.; Castedo, M.; Vitale, I.; Kroemer, G.; Abrieu, A. Whole-genome duplication increases tumor cell sensitivity to MPS1 inhibition. Oncotarget, 2016, 7(1), 885-901.
[http://dx.doi.org/10.18632/oncotarget.6432] [PMID: 26637805]
[101]
Vleugel, M.; Hoogendoorn, E.; Snel, B.; Kops, G.J. Evolution and function of the mitotic checkpoint. Dev. Cell, 2012, 23(2), 239-250.
[http://dx.doi.org/10.1016/j.devcel.2012.06.013] [PMID: 22898774]
[102]
Liu, D.; Vader, G.; Vromans, M.J.; Lampson, M.A.; Lens, S.M. Sensing chromosome bi-orientation by spatial separation of aurora B kinase from kinetochore substrates. Science, 2009, 323(5919), 1350-1353.
[http://dx.doi.org/10.1126/science.1167000] [PMID: 19150808]
[103]
London, N.; Biggins, S. Mad1 kinetochore recruitment by Mps1-mediated phosphorylation of Bub1 signals the spindle checkpoint. Genes Dev., 2014, 28(2), 140-152.
[http://dx.doi.org/10.1101/gad.233700.113] [PMID: 24402315]
[104]
Ji, Z.; Gao, H.; Yu, H. CELL DIVISION CYCLE. Kinetochore attachment sensed by competitive Mps1 and microtubule binding to Ndc80C. Science, 2015, 348(6240), 1260-1264.
[http://dx.doi.org/10.1126/science.aaa4029] [PMID: 26068854]
[105]
Jemaà, M.; Galluzzi, L.; Kepp, O.; Boilève, A.; Lissa, D.; Senovilla, L.; Harper, F.; Pierron, G.; Berardinelli, F.; Antoccia, A.; Castedo, M.; Vitale, I.; Kroemer, G. Preferential killing of p53-deficient cancer cells by reversine. Cell Cycle, 2012, 11(11), 2149-2158.
[http://dx.doi.org/10.4161/cc.20621] [PMID: 22592527]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy