[1]
WHO; Antimicrobial resistance: Global report on surveillance; World Health Organization: Geneva. , 2014, p. 256.
[2]
Shlaes, D.M.; Sahm, D.; Opiela, C.; Spellberg, B. The FDA reboot of antibiotic development. Antimicrob. Agents Chemother., 2013, 57(10), 4605-4607.
[3]
Marr, A.K.; Gooderham, W.J.; Hancock, R.E. Antibacterial peptides for therapeutic use: Obstacles and realistic outlook. Curr. Opin. Pharmacol., 2006, 6(5), 468-472.
[4]
de Freitas, L.M.; Lorenzón, E.N.; Santos-Filho, N.A.; de Paula Zago, L.H.; Uliana, M.P.; de Oliveira, K.T.; Cilli, E.M.; Fontana, C.R. Antimicrobial photodynamic therapy enhanced by the peptide aurein 1.2. Sci. Rep., 2018, 8(1), 4212.
[5]
Aida, K.L.; Kreling, P.F.; Caiaffa, K.S.; Calixto, G.M.F.; Chorilli, M.; Spolidorio, D.M.; Santos-Filho, N.A.; Cilli, E.M.; Duque, C. Antimicrobial peptide-loaded liquid crystalline precursor bioadhesive system for the prevention of dental caries. Int. J. Nanomedicine, 2018, 13, 3081.
[6]
Carretero, G.P.; Vicente, E.F.; Cilli, E.M.; Alvarez, C.M.; Jenssen, H.; Schreier, S. Dissecting the mechanism of action of actinoporins. Role of the N-terminal amphipathic α-helix in membrane binding and pore activity of sticholysins I and II. PLoS One, 2018, 13(8), e0202981.
[7]
Kishi, R.N.I.; Stach-Machado, D.; de Lacorte Singulani, J.; dos Santos, C.T.; Fusco-Almeida, A.M.; Cilli, E.M.; Freitas-Astúa, J.; Picchi, S.C.; Machado, M.A. Evaluation of cytotoxicity features of antimicrobial peptides with potential to control bacterial diseases of citrus. PLoS One, 2018, 13(9), e0203451.
[8]
Masias, E.; Dupuy, F.G.; da Silva Sanches, P.R.; Farizano, J.V.; Cilli, E.; Bellomio, A.; Saavedra, L.; Minahk, C. Impairment of the class IIa bacteriocin receptor function and membrane structural changes are associated to enterocin CRL35 high resistance in Listeria monocytogenes. Biochim. Biophys. Acta, Gen. Subj., 2017, 1861(7), 1770-1776.
[9]
Zhao, J.; Zhao, C.; Liang, G.; Zhang, M.; Zheng, J. Engineering antimicrobial peptides with improved antimicrobial and hemolytic activities. J. Chem. Inf. Model., 2013, 53(12), 3280-3296.
[10]
Huang, Y.W.; Lee, C.T.; Wang, T.C.; Kao, Y.C.; Yang, C.H.; Lin, Y.M.; Huang, K.S. The development of peptide-based antimicrobial agents against dengue virus. Curr. Protein Pept. Sci., 2018, 19(10), 998-1010.
[11]
Libério, M.S.; Joanitti, G.A.; Azevedo, R.B.; Cilli, E.M.; Zanotta, L.C.; Nascimento, A.C.; Sousa, M.V.; Júnior, O.R.P.; Fontes, W.; Castro, M.S. Anti-proliferative and cytotoxic activity of pentadactylin isolated from Leptodactylus labyrinthicus on melanoma cells. Amino Acids, 2011, 40(1), 51-59.
[12]
Pinto, M.E.F.; Najas, J.Z.; Magalhães, L.G.; Bobey, A.F.; Mendonça, J.N.; Lopes, N.P.; Leme, F.V.M.; Teixeira, S.P.; Trovó, M.; Andricopulo, A.D. Inhibition of breast cancer cell migration by cyclotides isolated from Pombalia calceolaria. J. Nat. Prod., 2018, 81(5), 1203-1208.
[13]
Sato, H.; Feix, J.B. Peptide-membrane interactions and mechanisms of membrane destruction by amphipathic α-helical antimicrobial peptides. Biochim. Biophys. Acta (BBA)-. Biomembr., 2006, 1758(9), 1245-1256.
[14]
Gregory, S.M.; Pokorny, A.; Almeida, P.F. Magainin 2 revisited: A test of the quantitative model for the all-or-none permeabilization of phospholipid vesicles. Biophys. J., 2009, 96(1), 116-131.
[15]
Wang, K.F.; Nagarajan, R.; Mello, C.M.; Camesano, T.A. Characterization of supported lipid bilayer disruption by chrysophsin-3 using QCM-D. J. Phys. Chem. B, 2011, 115(51), 15228-15235.
[16]
Peters, B.M.; Shirtliff, M.E.; Jabra-Rizk, M.A. Antimicrobial peptides: Primeval molecules or future drugs? PLoS Pathog., 2010, 6(10)
[17]
Mechkarska, M.; Meetani, M.; Michalak, P.; Vaksman, Z.; Takada, K.; Conlon, J.M. Hybridization between the African clawed frogs Xenopus laevis and Xenopus muelleri (Pipidae) increases the multiplicity of antimicrobial peptides in skin secretions of female offspring. Comp. Biochem. Physiol. Part D Genomics Proteomics, 2012, 7(3), 285-291.
[18]
Matsuzaki, K. Control of cell selectivity of antimicrobial peptides. BBA: Biomembranes, 2009, 1788(8), 1687-1692.
[19]
Li, Y.; Xiang, Q.; Zhang, Q.; Huang, Y.; Su, Z. Overview on the recent study of antimicrobial peptides: Origins, functions, relative mechanisms and application. Peptides, 2012, 37(2), 207-215.
[20]
Wang, K.; Yan, J.; Dang, W.; Liu, X.; Chen, R.; Zhang, J.; Zhang, B.; Zhang, W.; Kai, M.; Yan, W. Membrane active antimicrobial activity and molecular dynamics study of a novel cationic antimicrobial peptide polybia-MPI, from the venom of Polybia paulista. Peptides, 2013, 39, 80-88.
[21]
Tan, J.; Huang, J.; Huang, Y.; Chen, Y. Effects of single amino acid substitution on the biophysical properties and biological activities of an amphipathic α-helical antibacterial peptide against gram-negative bacteria. Molecules, 2014, 19(8), 10803-10817.
[22]
Gofman, Y.; Linser, S.; Rzeszutek, A.; Shental-Bechor, D.; Funari, S.S.; Ben-Tal, N.; Willumeit, R. Interaction of an antimicrobial peptide with membranes: Experiments and simulations with NKCS. J. Phys. Chem. B, 2010, 114(12), 4230-4237.
[23]
Wimley, W.C. Describing the mechanism of antimicrobial peptide action with the interfacial activity model. ACS Chem. Biol., 2010, 5(10), 905-917.
[24]
Melo, M.N.; Ferre, R.; Castanho, M.A.R.B. Antimicrobial peptides: Linking partition, activity and high membrane-bound concentrations. Nat. Rev. Microbiol., 2009, 7(3), 245-250.
[25]
Sengupta, D.; Leontiadou, H.; Mark, A.E.; Marrink, S.J. Toroidal pores formed by antimicrobial peptides show significant disorder. BBA: Biomembranes, 2008, 1778(10), 2308-2317.
[26]
Brogden, K.A. Antimicrobial peptides: Pore formers or metabolic inhibitors in bacteria? Nat. Rev. Microbiol., 2005, 3(3), 238-250.
[27]
Mechler, A.; Praporski, S.; Atmuri, K.; Boland, M.; Separovic, F.; Martin, L.L. Specific and selective peptide-membrane interactions revealed using quartz crystal microbalance. Biophys. J., 2007, 93(11), 3907-3916.
[28]
Wang, Y.; Chen, C.H.; Hu, D.; Ulmschneider, M.B.; Ulmschneider, J.P. Spontaneous formation of structurally diverse membrane channel architectures from a single antimicrobial peptide. Nat. Commun., 2016, 7, 13535.
[29]
Wimley, W.C.; Hristova, K. Antimicrobial peptides: Successes, challenges and unanswered questions. J. Membr. Biol., 2011, 239(1-2), 27-34.
[30]
Galdiero, S.; Falanga, A.; Cantisani, M.; Vitiello, M.; Morelli, G.; Galdiero, M. Peptide-lipid interactions: Experiments and applications. Int. J. Mol. Sci., 2013, 14(9), 18758-18789.
[31]
Riske, K.A. Chapter four-optical microscopy of giant vesicles as a tool to reveal the mechanism of action of antimicrobial peptides and the specific case of gomesin. Adv. Planar Lipid Bilayers Liposomes, 2015, 21, 99-129.
[32]
Berglund, N.A.; Piggot, T.J.; Jefferies, D.; Sessions, R.B.; Bond, P.J.; Khalid, S. Interaction of the antimicrobial peptide polymyxin B1 with both membranes of E. coli: A molecular dynamics study. PLOS Comput. Biol., 2015, 11(4), e1004180.
[33]
Arias, M.; Prenner, E.J.; Vogel, H.J. Calorimetry methods to study membrane interactions and perturbations induced by antimicrobial host defense peptides. Antimicrob. Peptide Method Protocol, 2017, 1548, 119-140.
[34]
Vlieghe, P.; Lisowski, V.; Martinez, J.; Khrestchatisky, M. Synthetic therapeutic peptides: Science and market. Drug Discov. Today, 2010, 15(1-2), 40-56.
[35]
Steckbeck, J.D.; Deslouches, B.; Montelaro, R.C. Antimicrobial peptides: New drugs for bad bugs? Expert Opin. Biol. Ther., 2014, 14(1), 11-14.
[36]
Zhu, W.L.; Shin, S.Y. Effects of dimerization of the cell-penetrating peptide Tat analog on antimicrobial activity and mechanism of bactericidal action. J. Pept. Sci., 2009, 15(5), 345-352.
[37]
Yang, S.T.; Kim, J.I.; Shin, S.Y. Effect of dimerization of a beta-turn antimicrobial peptide, PST13-RK, on antimicrobial activity and mammalian cell toxicity. Biotechnol. Lett., 2009, 31(2), 233-237.
[38]
Glukhov, E.; Stark, M.; Burrows, L.L.; Deber, C.M. Basis for selectivity of cationic antimicrobial peptides for bacterial versus mammalian membranes. J. Biol. Chem., 2005, 280(40), 33960-33967.
[39]
Sal-Man, N.; Oren, Z.; Shai, Y. Preassembly of membrane-active peptides is an important factor in their selectivity toward target cells. Biochemistry, 2002, 41(39), 11921-11930.
[40]
Sengupta, J.; Khan, M.A.; Huppertz, B.; Ghosh, D. In-vitro effects of the antimicrobial peptide Ala8,13,18-magainin II amide on isolated human first trimester villous trophoblast cells. Reprod. Biol. Endocrinol., 2011, 9, 49.
[41]
Welling, M.M.; Brouwer, C.P.J.M.; Hof, W.; Veerman, E.C.I.; Amerongen, A.V.N. Histatin-derived monomeric and dimeric synthetic peptides show strong bactericidal activity towards multidrug-resistant Staphylococcus aureus in vivo. Antimicrob. Agents Chemother., 2007, 51(9), 3416-3419.
[42]
Lakshminarayanan, R.; Liu, S.; Li, J.; Nandhakumar, M.; Aung, T.T.; Goh, E.; Chang, J.Y.; Saraswathi, P.; Tang, C.; Safie, S.R.; Lin, L.Y.; Riezman, H.; Lei, Z.; Verma, C.S.; Beuerman, R.W. Synthetic multivalent antifungal peptides effective against fungi. PLoS One, 2014, 9(2), e87730.
[43]
Lee, J.Y.; Yang, S.T.; Lee, S.K.; Jung, H.H.; Shin, S.Y.; Hahm, K.S.; Kim, J.I. Salt-resistant homodimeric bactenecin, a cathelicidin-derived antimicrobial peptide. FEBS J., 2008, 275(15), 3911-3920.
[44]
Taylor, K.; McCullough, B.; Clarke, D.J.; Langley, R.J.; Pechenick, T.; Hill, A.; Campopiano, D.J.; Barr, P.E.; Dorin, J.R.; Govan, J.R.W. Covalent dimer species of beta-defensin Defr1 display potent antimicrobial activity against multidrug-resistant bacterial pathogens. Antimicrob. Agents Chemother., 2007, 51(5), 1719-1724.
[45]
Güell, I.; Ferre, R.; Sørensen, K.K.; Badosa, E.; Ng-Choi, I.; Montesinos, E.; Bardají, E.; Feliu, L.; Jensen, K.J.; Planas, M. Multivalent display of the antimicrobial peptides BP100 and BP143. Beilstein J. Org. Chem., 2012, 8, 2106-2117.
[46]
Hernandez-Gordillo, V.; Geisler, I.; Chmielewski, J. Dimeric unnatural polyproline-rich peptides with enhanced antibacterial activity. Bioorg. Med. Chem. Lett., 2014, 24(2), 556-559.
[47]
Dewan, P.C.; Anantharaman, A.; Chauhan, V.S.; Sahal, D. Antimicrobial action of prototypic amphipathic cationic decapeptides and their branched dimers. Biochemistry, 2009, 48(24), 5642-5657.
[48]
Otvos, L.; Wade, J.D.; Lin, F.; Condie, B.A.; Hanrieder, J.; Hoffmann, R. Designer antibacterial peptides kill fluoroquinolone-resistant clinical isolates. J. Med. Chem., 2005, 48(16), 5349-5359.
[49]
Lorenzón, E.N.; Cespedes, G.F.; Vicente, E.F.; Nogueira, L.G.; Bauab, T.M.; Castro, M.S.; Cilli, E.M. Effects of dimerization on the structure and biological activity of antimicrobial peptide Ctx-Ha. Antimicrob. Agents Chemother., 2012, 56, 3004-3010.
[50]
Mukai, Y.; Matsushita, Y.; Niidome, T.; Hatekeyama, T.; Aoyag, H. Parallel and antiparallel dimers of magainin 2: Their interaction with phospholipid membrane and antibacterial activity. J. Pept. Sci., 2002, 8(10), 570-577.
[51]
Dempsey, C.E.; Ueno, S.; Avison, M.B. Enhanced membrane permeabilization and antibacterial activity of a disulfide-dimerized magainin analogue. Biochemistry, 2003, 42(2), 402-409.
[52]
Lorenzón, E.; Riske, K.; Troiano, G.; Da Hora, G.; Soares, T.; Cilli, E. Effect of dimerization on the mechanism of action of aurein 1.2Biochim. Biophys. Acta (BBA)-. Biomembr., 2016, 1858(6), 1129-1138.
[53]
Jang, W.S.; Kim, C.H.; Kim, K.N.; Park, S.Y.; Lee, J.H.; Son, S.M.; Lee, I.H. Biological activities of synthetic analogs of halocidin, an antimicrobial peptide from the tunicate Halocynthia aurantium. Antimicrob. Agents Chemother., 2003, 47(8), 2481-2486.
[54]
Zhou, L.; Liu, S.; Chen, L.; Li, J.; Ong, L.; Guo, L.; Wohland, T.; Tang, C.; Lakshminarayanan, R.; Mavinahalli, J. The structural parameters for antimicrobial activity, human epithelial cell cytotoxicity and killing mechanism of synthetic monomer and dimer analogues derived from hBD3 C-terminal region. Amino Acids, 2011, 40(1), 123-133.
[55]
Santos-Filho, N.A.; Lorenzon, E.N.; Ramos, M.A.; Santos, C.T.; Piccoli, J.P.; Bauab, T.M.; Fusco-Almeida, A.M.; Cilli, E.M. Synthesis and characterization of an antibacterial and non-toxic dimeric peptide derived from the C-terminal region of Bothropstoxin-I. Toxicon, 2015, 103, 160-168.
[56]
Jamasbi, E.; Batinovic, S.; Sharples, R.A.; Sani, M.A.; Robins-Browne, R.M.; Wade, J.D.; Separovic, F.; Hossain, M.A. Melittin peptides exhibit different activity on different cells and model membranes. Amino Acids, 2014.
[57]
Andreu, D.; Albericio, F.; Solé, N.A.; Munson, M.C.; Ferrer, M.; Barany, G. Formation of disulfide bonds in synthetic peptides and proteins; Pept. Synth. Protocol, 1995, pp. 91-169.
[58]
Postma, T.M.; Albericio, F. Disulfide formation strategies in peptide synthesis. Eur. J. Org. Chem., 2014, 2014(17), 3519-3530.
[59]
Lorenzón, E.; Santos-Filho, N.; Ramos, M.; Bauab, T.; Camargo, I.; Cilli, E. C-terminal lysine-linked magainin 2 with increased
activity against multidrug-resistant bacteria Prot. Pept. Lett., 2016.
[60]
Cilli, E.M.; Pigossi, F.T.; Crusca, E.; Ros, U.; Martinez, D.; Lanio, M.E.; Alvarez, C.; Schreier, S. Correlations between differences in amino-terminal sequences and different hemolytic activity of sticholysins. Toxicon, 2007, 50(8), 1201-1204.
[61]
Crusca, E.; Rezende, A.; Marchetto, R.; Mendes-Giannini, M.; Fontes, W.; Castro, M.; Cilli, E. Influence of N-terminus modifications on the biological activity, membrane interaction, and secondary structure of the antimicrobial peptide Hylin-a1. Biopolymers, 2011, 96(1), 41-48.
[62]
Jahnsen, R.O.; Sandberg-Schaal, A.; Frimodt-Møller, N.; Nielsen, H.M.; Franzyk, H. End group modification: Efficient tool for
improving activity of antimicrobial peptide analogues towards
gram-positive bacteria Eur. J. Pharm. Biopharm.,, 2015, 95 (Pt A),40-46
[64]
Reddy Chichili, V.P.; Kumar, V.; Sivaraman, J. Linkers in the structural biology of protein-protein interactions. Protein Sci., 2013, 22(2), 153-167.
[65]
Larsen, A.N.; Sørensen, K.K.; Johansen, N.T.; Martel, A.; Kirkensgaard, J.J.; Jensen, K.J.; Arleth, L.; Midtgaard, S.R. Dimeric peptides with three different linkers self-assemble with phospholipids to form peptide nanodiscs that stabilize membrane proteins. Soft Matter, 2016, 12(27), 5937-5949.
[66]
Zasloff, M. Magainins, a class of antimicrobial peptides from Xenopus skin: Isolation, characterization of two active forms, and partial cDNA sequence of a precursor. Proc. Natl. Acad. Sci. USA, 1987, 84(15), 5449-5453.
[67]
Lee, W.; Lee, D.G. Magainin 2 induces bacterial cell death showing apoptotic properties. Curr. Microbiol., 2014, 69(6), 794-801.
[68]
Lehmann, J.; Retz, M.; Sidhu, S.S.; Suttmann, H.; Sell, M.; Paulsen, F.; Harder, J.; Unteregger, G.; Stöckle, M. Antitumor activity of the antimicrobial peptide magainin II against bladder cancer cell lines. Eur. Urol., 2006, 50(1), 141-147.
[69]
Westerhoff, H.V.; Zasloff, M.; Rosner, J.L.; Hendler, R.W.; De Waal, A.; Vaz Gomes, A.; Jongsma, P.M.; Riethorst, A.; Juretić, D. Functional synergism of the magainins PGLa and magainin-2 in Escherichia coli, tumor cells and liposomes. Eur. J. Biochem., 1995, 228(2), 257-264.
[70]
Aboudy, Y.; Mendelson, E.; Shalit, I.; Bessalle, R.; Fridkin, M. Activity of two synthetic amphiphilic peptides and magainin-2 against herpes simplex virus types 1 and 2. Int. J. Pept. Protein Res., 1994, 43(6), 573-582.
[71]
Zasloff, M.; Martin, B.; Chen, H.C. Antimicrobial activity of synthetic magainin peptides and several analogues. Proc. Natl. Acad. Sci. USA, 1988, 85(3), 910-913.
[72]
Han, E.; Lee, H. Effects of PEGylation on the binding interaction of magainin 2 and tachyplesin I with lipid bilayer surface. Langmuir, 2013, 29(46), 14214-14221.
[73]
Unger, T.; Oren, Z.; Shai, Y. The effect of cyclization of magainin 2 and melittin analogues on structure, function, and model membrane interactions: Implication to their mode of action. Biochemistry, 2001, 40(21), 6388-6397.
[74]
Bessalle, R.; Kapitkovsky, A.; Gorea, A.; Shalit, I.; Fridkin, M. All-D-magainin: Chirality, antimicrobial activity and proteolytic resistance. FEBS Lett., 1990, 274(1/2), 151-155.
[75]
Lorenzón, E.N.; Sanches, P.R.; Nogueira, L.G.; Bauab, T.M.; Cilli, E.M. Dimerization of aurein 1.2: Effects in structure, antimicrobial activity and aggregation of Cândida albicans cells. Amino Acids, 2013, 44(6), 1521-1528.
[76]
Lorenzón, E.N.; Piccoli, J.P.; Cilli, E.M. Interaction between the antimicrobial peptide Aurein 1.2 dimer and mannans. Amino Acids, 2014, 46(11), 2627-2631.
[77]
Liu, S.; Zhou, L.; Lakshminarayanan, R.; Beuerman, R. Multivalent antimicrobial peptides as therapeutics: Design principles and structural diversities. Int. J. Pept. Protein Res., 2010, 16(3), 199-213.
[78]
Chen, Y.X.; Guarnieri, M.T.; Vasil, A.I.; Vasil, M.L.; Mant, C.T.; Hodges, R.S. Role of peptide hydrophobicity in the mechanism of action of alpha-helical antimicrobial peptides. Antimicrob. Agents Chemother., 2007, 51(4), 1398-1406.
[79]
Kim, S.; Kim, S.S.; Lee, B.J. Correlation between the activities of α-helical antimicrobial peptides and hydrophobicities represented as RP HPLC retention times. Peptides, 2005, 26(11), 2050-2056.
[80]
Jiang, Z.Q.; Vasil, A.I.; Gera, L.; Vasil, M.L.; Hodges, R.S. Rational design of alpha-helical antimicrobial peptides to target gram-negative pathogens, Acinetobacter baumannii and Pseudomonas aeruginosa: Utilization of charge, ‘specificity determinants,’ total hydrophobicity, hydrophobe type and location as design parameters to improve the therapeutic ratio. Chem. Biol. Drug Des., 2011, 77(4), 225-240.
[81]
Thamri, A.; Létourneau, M.; Djoboulian, A.; Chatenet, D.; Déziel, E.; Castonguay, A.; Perreault, J. Peptide modification results in the formation of a dimer with a 60-fold enhanced antimicrobial activity. PLoS One, 2017, 12(3), e0173783.
[82]
Liu, B.; Huang, H.; Yang, Z.; Liu, B.; Gou, S.; Zhong, C.; Han, X.; Zhang, Y.; Ni, J.; Wang, R. Design of novel antimicrobial peptide dimer analogues with enhanced antimicrobial activity in vitro and in vivo by intermolecular triazole bridge strategy. Peptides, 2016, 88, 115-125.
[83]
Lorenzon, E.N.; Sanches, P.R.S.; Nogueira, L.G.; Bauab, T.M.; Cilli, E.M. Dimerization of aurein 1.2: Effects in structure, antimicrobial activity and aggregation of Candida albicans cells. Amino Acids, 2013, 44(6), 1521-1528.