[1]
Locatelli G, Theodorou D, Kendirli A, et al. Mononuclear phagocytes locally specify and adapt their phenotype in a multiple sclerosis model. Nat Neurosci 2018; 21(9): 1196-208.
[2]
Auffray C, Sieweke MH, Geissmann F. Blood monocytes: development, heterogeneity, and relationship with dendritic cells. Annu Rev Immunol 2009; 27: 669-92.
[3]
Ziegler-Heitbrock L, Ancuta P, Crowe S, et al. Nomenclature of monocytes and dendritic cells in blood. Blood 2010; 74-80.
[4]
Meissner F, Seger RA, Moshous D, Fischer A, Reichenbach J, Zychlinsky A. Inflammasome activation in NADPH oxidase defective mononuclear phagocytes from patients with chronic granulomatous disease. Blood 2010; 116(9): 1570-3.
[5]
Camilli G, Eren E, Williams DL, Aimanianda V, Meunier E, Quintin J. Impaired phagocytosis directs human monocyte activation in response to fungal derived β‐glucan particles. Eur J Immunol 2018; 48(5): 757-70.
[6]
Wang X-S, Zhang Z, Wang H-C, et al. Rapid identification of UCA1 as a very sensitive and specific unique marker for human bladder carcinoma. Clin Cancer Res 2006; 12(16): 4851-8.
[7]
Lucchesi D, Popa SG, Sancho V, et al. Influence of high density lipoprotein cholesterol levels on circulating monocytic angiogenic cells functions in individuals with type 2 diabetes mellitus. Cardiovasc Diabetol 2018; 17(1): 78.
[8]
Kho S, Minigo G, Andries B, et al. Circulating neutrophil extracellular traps and neutrophil activation are increased in proportion to disease severity in human malaria. J Infect Dis 2018; 1-44.
[9]
Merino KM, Allers C, Didier ES, Kuroda MJ. Role of monocyte/macrophages during HIV/SIV infection in adult and pediatric acquired immune deficiency syndrome. Front Immunol 2017; 8: 16.
[10]
Arfvidsson J, Ahlin F, Vargas KG, Thaler B, Wojta J, Huber K. Monocyte subsets in myocardial infarction: A review. Int J Cardiol 2017; 231: 47-53.
[11]
Varol C, Yona S, Jung S. Origins and tissue-context-dependent fates of blood monocytes. Immunol Cell Biol 2009; 87(1): 30.
[12]
Pang L, Qin J, Han L, et al. Exploiting macrophages as targeted carrier to guide nanoparticles into glioma. Oncotarget 2016; 7(24): 37081-91.
[13]
Wang S, Wu Y. The role of chemokines in mesenchymal stromal cell homing to sites of inflammation, including infarcted myocardium. The Biology and Therapeutic Application of Mesenchymal Cells 2017; pp. 314-22.
[14]
Singh G, Nassri A, Kim D, Zhu H, Ramzan Z. Lymphocyte-to-monocyte ratio can predict mortality in pancreatic adenocarcinoma. World J Gastrointest Pharmacol Ther 2017; 8(1): 60.
[15]
Serbina NV, Cherny M, Shi C, et al. Distinct responses of human monocyte subsets to Aspergillus fumigatus conidia. J Immunol 2009; 183(4): 2678-87.
[16]
Nockher WA, Scherberich JE. Expanded CD14+ CD16+ monocyte subpopulation in patients with acute and chronic infections undergoing hemodialysis. Infect Immun 1998; 66(6): 2782-90.
[17]
Patel AA, Zhang Y, Fullerton JN, et al. The fate and lifespan of human monocyte subsets in steady state and systemic inflammation. J Exp Med 2017; 214(7): 1913-23.
[18]
Wolf Y, Shemer A, Polonsky M, et al. Autonomous TNF is critical for in vivo monocyte survival in steady state and inflammation. J Exp Med 2017; 214(4): 905-17.
[19]
Li H, Tu Z. The Role of Monocytes/Macrophages in HBV and
HCV Infection. Biology of Myelomonocytic Cells: InTech; 2017.
[20]
Ancuta P, Liu K-Y, Misra V, et al. Transcriptional profiling reveals developmental relationship and distinct biological functions of CD16+ and CD16-monocyte subsets. BMC Genomics 2009; 10(1): 403.
[21]
Ziegler-Heitbrock L. The CD14+ CD16+ blood monocytes: their role in infection and inflammation. J Leukoc Biol 2007; 81(3): 584-92.
[22]
Shaji J, Lal M. Nanocarriers for targeting in inflammation. Asian J Pharm Clin Res 2013; 6(3): 3-12.
[23]
Kelly C, Jefferies C, Cryan S-A. Targeted liposomal drug delivery to monocytes and macrophages. J Drug Deliv 2011; 2011: 11.
[24]
Heidenreich S. Monocyte CD14: a multifunctional receptor engaged in apoptosis from both sides. J Leukoc Biol 1999; 65(6): 737-43.
[25]
Raghu H, Lepus CM, Wang Q, et al. CCL2/CCR2, but not CCL5/CCR5, mediates monocyte recruitment, inflammation and cartilage destruction in osteoarthritis. Ann Rheum Dis 2017; 76(5): 914-22.
[26]
Tsukamoto M, Seta N, Yoshimoto K, Suzuki K, Yamaoka K, Takeuchi T. CD14 bright CD16+ intermediate monocytes are induced by interleukin-10 and positively correlate with disease activity in rheumatoid arthritis. Arthritis Res Ther 2017; 19(1): 28.
[27]
Vazquez-Sanchez T, Caballero A, Ruiz-Esteban P, et al. Increase in proinflammatory CD14++ CD16+ monocytes in samples from aspiration cytology compared with peripheral blood in kidney transplant patients with borderline rejection. Transplantation 2018; 102: 57.
[28]
Johansson J, Tabor V, Wikell A, Jalkanen S, Fuxe J. TGF-β1-induced epithelial–mesenchymal transition promotes monocyte/macrophage properties in breast cancer cells. Front Oncol 2015; 5: 1-3.
[29]
Dhanda A, Williams E, Yates E, Collins P, Lee R, Cramp M. Intermediate (CD14++ CD16+) monocytes from patients with acute severe alcoholic hepatitis are activated and functionally similar to classical (CD14++ CD16−) monocytes. J Hepatol 2017; 66(1): 346.
[30]
Bouhlel MA, Derudas B, Rigamonti E, et al. PPARγ activation primes human monocytes into alternative M2 macrophages with anti-inflammatory properties. Cell Metab 2007; 6(2): 137-43.
[31]
Akira S, Takeda K, Kaisho T. Toll-like receptors: critical proteins linking innate and acquired immunity. Nat Immunol 2001; 2(8): 675.
[32]
Yao Q, Liu J, Zhang Z, et al. PPARγ induces the gene expression of integrin ανβ5 to promote macrophage M2 polarization. J Biol Chem 2018; 1-24.
[33]
Chieppa M, Bianchi G, Doni A, et al. Cross-linking of the mannose receptor on monocyte-derived dendritic cells activates an anti-inflammatory immunosuppressive program. J Immunol 2003; 171(9): 4552-60.
[34]
Maeda H, Sawa T, Konno T. Mechanism of tumor-targeted delivery of macromolecular drugs, including the EPR effect in solid tumor and clinical overview of the prototype polymeric drug SMANCS. J Control Release 2001; 74(1): 47-61.
[35]
Iyer AK, Khaled G, Fang J, Maeda H. Exploiting the enhanced permeability and retention effect for tumor targeting. Drug Discov Today 2006; 11(17): 812-8.
[36]
Pirollo KF, Chang EH. Does a targeting ligand influence nanoparticle tumor localization or uptake? Trends Biotechnol 2008; 26(10): 552-8.
[37]
Danhier F, Feron O, Préat V. To exploit the tumor microenvironment: passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J Control Release 2010; 148(2): 135-46.
[38]
Adams GP, Schier R, McCall AM, et al. High affinity restricts the localization and tumor penetration of single-chain fv antibody molecules. Cancer Res 2001; 61(12): 4750-5.
[39]
Gosk S, Moos T, Gottstein C, Bendas G. VCAM-1 directed immunoliposomes selectively target tumor vasculature in vivo. Biochim Biophys Acta Biomembr 2008; 1778(4): 854-63.
[40]
Allen TM. Ligand-targeted therapeutics in anticancer therapy. Nat Rev Cancer 2002; 2(10): 750.
[41]
Nobs L, Buchegger F, Gurny R, Allémann E. Current methods for attaching targeting ligands to liposomes and nanoparticles. J Pharm Sci 2004; 93(8): 1980-92.
[42]
Puri A, Loomis K, Smith B, et al. Lipid-based nanoparticles as pharmaceutical drug carriers: from concepts to clinic. Crit Rev Ther Drug Carrier Syst 2009; 26(6): 523-80.
[43]
Torchilin VP. Drug targeting. Eur J Pharm Sci 2000; 11: 81-91.
[44]
Torchilin V, Levchenko T, Lukyanov A, et al. p-Nitrophenylcarbonyl-PEG-PE-liposomes: fast and simple attachment of specific ligands, including monoclonal antibodies, to distal ends of PEG chains via p-nitrophenylcarbonyl groups. Biochim Biophys Acta Biomembr 2001; 1511(2): 397-411.
[45]
Nelson SM, Ferguson LR, Denny WA. Non-covalent ligand/DNA interactions: minor groove binding agents. Mutat Res 2007; 623(1): 24-40.
[46]
Pan C-x, Zhang H, Lam KS, Aina OH. Bladder cancer specific ligand peptides. Google Patents 2017.
[47]
Suga T, Fuchigami Y, Hagimori M, Kawakami S. Ligand peptide-grafted PEGylated liposomes using HER2 targeted peptide-lipid derivatives for targeted delivery in breast cancer cells: The effect of serine-glycine repeated peptides as a spacer. Int J Pharm 2017; 521(1): 361-4.
[48]
Wang J, Masehi-Lano JJ, Chung EJ. Peptide and antibody ligands for renal targeting: nanomedicine strategies for kidney disease. Biomater Sci 2017; 5(8): 1450-9.
[49]
Grewal I, Gresser M, Khare S, Syed R. Engineered TAA antibody-TNFSF member ligand fusion molecules. Google Patents 2017.
[50]
Mosaheb MM, Reiser ML, Wetzler LM. Toll-like receptor ligand-Based Vaccine adjuvants require intact MyD88 signaling in antigen-Presenting cells for germinal center Formation and antibody Production. Front Immunol 2017; 8: 225.
[51]
Hyun JY, Park CW, Liu Y, et al. Carbohydrate analogue microarrays for identification of lectin‐selective ligands. ChemBioChem 2017; 18(12): 1077-82.
[52]
Daeihamed M, Dadashzadeh S, Haeri A, Faghih Akhlaghi M. Potential of liposomes for enhancement of oral drug absorption. Curr Drug Deliv 2017; 14(2): 289-303.
[53]
Alonso MJ. Nanomedicines for overcoming biological barriers. Biomed Pharmacother 2004; 58(3): 168-72.
[54]
Naz K, Fatima Q-U-A, Ahmed N, Shahnaz G, Khan GM. Nanoworld: Recent advances based on nanomedicine for diagnosis and lung cancer therapy. J Colloid Sci Biotech 2015; 4(1): 1-13.
[55]
Fine-Shamir N, Beig A, Zur M, Lindley D, Miller JM, Dahan A. Toward successful cyclodextrin based solubility-enabling formulations for oral delivery of lipophilic drugs: solubility–permeability trade-off, biorelevant dissolution, and the unstirred water layer. Mol Pharm 2017; 14(6): 2138-46.
[56]
Wang AZ, Gu F, Zhang L, et al. Biofunctionalized targeted nanoparticles for therapeutic applications. Expert Opin Biol Ther 2008; 8(8): 1063-70.
[57]
Torchilin VP. Passive and active drug targeting: drug delivery to tumors as an example Drug Delivery. Springer 2010; pp. 3-53.
[58]
Torchilin VP. Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov 2005; 4(2): 145-60.
[59]
Fenske DB, Cullis PR. Liposomal nanomedicines. Expert Opin Drug Deliv 2008; 5(1): 25-44.
[60]
Patravale VB, Desai PP, Mapara SS. Lipid Nanocarriers for Advanced Therapeutic Applications Multifunctional Nanocarriers for Contemporary Healthcare Applications. IGI Global 2018; pp. 85-128.
[61]
Florence A. Liposomes in drug delivery. Routledge 2017.
[62]
Patil YP, Jadhav S. Novel methods for liposome preparation. Chem Phys Lipids 2014; 177: 8-18.
[63]
Allen TM, Cullis PR. Liposomal drug delivery systems: from concept to clinical applications. Adv Drug Deliv Rev 2013; 65(1): 36-48.
[64]
Sala M, Miladi K, Agusti G, Elaissari A, Fessi H. Preparation of liposomes: A comparative study between the double solvent displacement and the conventional ethanol injection—From laboratory scale to large scale. Colloids Surf A Physicochem Eng Asp 2017; 524: 71-8.
[65]
Hafez IM, Cullis PR. Roles of lipid polymorphism in intracellular delivery. Adv Drug Deliv Rev 2001; 47(2): 139-48.
[66]
Płaczek M, Wątróbska-Świetlikowska D, Stefanowicz-Hajduk J, Drechsler M, Ochocka JR, Sznitowska M. Comparison of the in vitro cytotoxicity among phospholipid-based parenteral drug delivery systems: Emulsions, liposomes and aqueous lecithin dispersions (WLDs). Eur J Pharm Sci 2019; 127: 92-101.
[67]
Epstein-Barash H, Gutman D, Markovsky E, et al. Physicochemical parameters affecting liposomal bisphosphonates bioactivity for restenosis therapy: internalization, cell inhibition, activation of cytokines and complement, and mechanism of cell death. J Control Release 2010; 146(2): 182-95.
[68]
Lütgebaucks C, Macias-Romero C, Roke S. Characterization of the interface of binary mixed DOPC: DOPS liposomes in water: The impact of charge condensation. J Chem Phys 2017; 146(4): 044701.
[69]
Daraee H, Etemadi A, Kouhi M, Alimirzalu S, Akbarzadeh A. Application of liposomes in medicine and drug delivery. Artif Cells Nanomed Biotechnol 2016; 44(1): 381-91.
[70]
Niculescu-Duvaz D, Heyes J, Springer CJ. Structure-activity relationship in cationic lipid mediated gene transfection. Curr Med Chem 2003; 10(14): 1233-61.
[71]
Bunker A, Magarkar A, Viitala T. Rational design of liposomal drug delivery systems, a review: combined experimental and computational studies of lipid membranes, liposomes and their PEGylation. Biochim Biophys Acta Biomembr 2016; 1858(10): 2334-52.
[72]
Pramanik SK, Losada-Pérez P, Reekmans G, et al. Physicochemical characterizations of functional hybrid liposomal nanocarriers formed using photo-sensitive lipids. Sci Rep 2017; 7: 46-257.
[73]
Chechetka SA, Yu Y, Zhen X, Pramanik M, Pu K, Miyako E. Light-driven liquid metal nanotransformers for biomedical theranostics. Nat Commun 2017; 8: 15-432.
[74]
Puri A, Kramer-Marek G, Campbell-Massa R, et al. HER2-specific affibody-conjugated thermosensitive liposomes (Affisomes) for improved delivery of anticancer agents. J Liposome Res 2008; 18(4): 293-307.
[75]
Schubert MA, Muller-Goymann CC. Characterisation of surface-modified solid lipid nanoparticles (SLN): influence of lecithin and nonionic emulsifier. Eur J Pharm Biopharm 2005; 61(1-2): 77-86.
[76]
Wissing SA, Muller RH. The influence of solid lipid nanoparticles on skin hydration and viscoelasticity--in vivo study. Eur J Pharm Biopharm 2003; 56(1): 67-72.
[77]
Makled S, Nafee N, Boraie N. Nebulized solid lipid nanoparticles for the potential treatment of pulmonary hypertension via targeted delivery of phosphodiesterase-5-inhibitor. Int J Pharm 2017; 517(1): 312-21.
[78]
Tekade RK, Maheshwari R, Tekade M, Chougule MB. Solid lipid nanoparticles for targeting and delivery of drugs and genes. Nanotechnology-Based Approaches for Targeting and Delivery of Drugs and Genes 2017; p. 256.
[79]
Kotmakçı M, Akbaba H, Erel G, Ertan G, Kantarcı G. Improved method for solid lipid nanoparticle preparation based on hot microemulsions: preparation, characterization, cytotoxicity, and hemocompatibility evaluation. AAPS PharmSciTech 2017; 18(4): 1355-65.
[80]
Arora R, Katiyar SS, Kushwah V, Jain S. Solid lipid nanoparticles and nanostructured lipid carrier-based nanotherapeutics in treatment of psoriasis: a comparative study. Expert Opin Drug Deliv 2017; 14(2): 165-77.
[81]
Behbahani ES, Ghaedi M, Abbaspour M, Rostamizadeh K. Optimization and characterization of ultrasound assisted preparation of curcumin-loaded solid lipid nanoparticles: Application of central composite design, thermal analysis and X-ray diffraction techniques. Ultrason Sonochem 2017; 38: 271-80.
[82]
Ganesan P, Narayanasamy D. Lipid nanoparticles: different preparation techniques, characterization, hurdles, and strategies for the production of solid lipid nanoparticles and nanostructured lipid carriers for oral drug delivery. Sustainable Chemistry and Pharmacy 2017; 6: 37-56.
[83]
Stella B, Marengo A, Arpicco S. Nanoparticles: an overview of the preparation methods from preformed polymers. Istituto Lombardo-Accademia di Scienze e Lettere-Incontri di Studio 2017; pp. 1-12.
[84]
Klauber TC, Laursen JM, Zucker D, Brix S, Jensen SS, Andresen TL. Delivery of TLR7 agonist to monocytes and dendritic cells by DCIR targeted liposomes induces robust production of anti-cancer cytokines. Acta Biomater 2017; 53: 367-77.
[85]
Beg S, Jain S, Kushwah V, et al. Novel surface-engineered solid lipid nanoparticles of rosuvastatin calcium for low-density lipoprotein-receptor targeting: a quality by design-driven perspective. Nanomedicine 2017; 12(4): 333-56.
[86]
Schubert MA, Harms M, Muller-Goymann CC. Structural investigations on lipid nanoparticles containing high amounts of lecithin. Eur J Pharm Sci 2006; 27(2-3): 226-36.
[87]
Tapeinos C, Battaglini M, Ciofani G. Advances in the design of solid lipid nanoparticles and nanostructured lipid carriers for targeting brain diseases. J Control Release 2017.
[88]
Wissing S, Kayser O, Müller R. Solid lipid nanoparticles for parenteral drug delivery. Adv Drug Deliv Rev 2004; 56(9): 1257-72.
[89]
Vyas S, Kannan M, Jain S, Mishra V, Singh P. Design of liposomal aerosols for improved delivery of rifampicin to alveolar macrophages. Int J Pharm 2004; 269(1): 37-49.
[90]
Zaki NM, Tirelli N. Gateways for the intracellular access of nanocarriers: a review of receptor-mediated endocytosis mechanisms and of strategies in receptor targeting. Expert Opin Drug Deliv 2010; 7(8): 895-913.
[91]
Schöler N, Olbrich C, Tabatt K, Müller R, Hahn H, Liesenfeld O. Surfactant, but not the size of solid lipid nanoparticles (SLN) influences viability and cytokine production of macrophages. Int J Pharm 2001; 221(1-2): 57-67.
[92]
Botto C, Mauro N, Amore E, Martorana E, Giammona G, Bondì ML. Surfactant effect on the physicochemical characteristics of cationic solid lipid nanoparticles. Int J Pharm 2017; 516(1): 334-41.
[93]
Vijayanand P, Jyothi V, Aditya N, Mounika A. Development and characterization of solid lipid nanoparticles containing herbal extract: in vivo antidepressant activity. J Drug Deliv 2018; 2018: 1-7.
[94]
Kawakami K, Miyazaki A, Fukushima M, et al. Physicochemical properties of solid phospholipid particles as a drug delivery platform for improving oral absorption of poorly soluble drugs. Pharm Res 2017; 34(1): 208-16.
[95]
Younas N, Rashid MA, Usman M, et al. Solubilization of Ni imidazole complex in micellar media of anionic surfactants, sodium dodecyl sulfate and sodium stearate. J Surfactants Deterg 2017; 20(6): 1311-20.
[96]
Chanput W, Mes JJ, Wichers HJ. THP-1 cell line: an in vitro cell model for immune modulation approach. Int Immunopharmacol 2014; 23(1): 37-45.
[97]
Sarangi PP, Chakraborty P, Dash SP, et al. Cell adhesion protein fibulin-7 and its C-terminal fragment negatively regulate monocyte and macrophage migration and functions in vitro and in vivo. FASEB J 2018; 1(1): 1-10.
[98]
Bonifaz L, Bonnyay D, Mahnke K, Rivera M, Nussenzweig MC, Steinman RM. Efficient targeting of protein antigen to the dendritic cell receptor DEC-205 in the steady state leads to antigen presentation on major histocompatibility complex class I products and peripheral CD8+ T cell tolerance. J Exp Med 2002; 196(12): 1627-38.
[99]
Van Broekhoven CL, Parish CR, Demangel C, Britton WJ, Altin JG. Targeting dendritic cells with antigen-containing liposomes: a highly effective procedure for induction of antitumor immunity and for tumor immunotherapy. Cancer Res 2004; 64(12): 4357-65.
[100]
Chono S, Tauchi Y, Deguchi Y, Morimoto K. Efficient drug delivery to atherosclerotic lesions and the antiatherosclerotic effect by dexamethasone incorporated into liposomes in atherogenic mice. J Drug Target 2005; 13(4): 267-76.
[101]
Rahman M, Beg S, Verma A, et al. Therapeutic applications of liposomal based drug delivery and drug targeting for immune linked inflammatory maladies: a contemporary view point. Curr Drug Targets 2017; 18(13): 1558-71.
[102]
Elhissi A, Faizi M, Naji W, Gill H, Taylor K. Physical stability and aerosol properties of liposomes delivered using an air-jet nebulizer and a novel micropump device with large mesh apertures. Int J Pharm 2007; 334(1-2): 62-70.
[103]
Gibbons AM, McElvaney NG, Taggart CC, Cryan S-A. Delivery of rSLPI in a liposomal carrier for inhalation provides protection against cathepsin L degradation. J Microencapsul 2009; 26(6): 513-22.
[104]
Costa A, Sarmento B, Seabra V. Mannose-functionalized solid lipid nanoparticles are effective in targeting alveolar macrophages. Eur J Pharm Sci 2018; 114: 103-13.
[105]
Jain A, Agarwal A, Majumder S, et al. Mannosylated solid lipid nanoparticles as vectors for site-specific delivery of an anti-cancer drug. J Control Release 2010; 148(3): 359-67.
[106]
Maretti E, Costantino L, Rustichelli C, et al. Surface engineering of Solid Lipid Nanoparticle assemblies by methyl α-d-mannopyranoside for the active targeting to macrophages in anti-tuberculosis inhalation therapy. Int J Pharm 2017; 528(1-2): 440-51.
[107]
González-Juarrero M, O’Sullivan MP. Optimization of inhaled therapies for tuberculosis: the role of macrophages and dendritic cells. Tuberculosis 2011; 91(1): 86-92.
[108]
Kharaji MH, Doroud D, Taheri T, Rafati S. Drug targeting to macrophages with solid lipid nanoparticles harboring paromomycin: an in vitro evaluation against L. major and L. tropica. AAPS PharmSciTech 2016; 17(5): 1110-9.
[109]
Sundar S, Jha T, Thakur CP, Sinha PK, Bhattacharya SK. Injectable paromomycin for visceral leishmaniasis in India. N Engl J Med 2007; 356(25): 2571-81.
[110]
Töyräs A, Ollikainen J, Taskinen M, Mönkkönen J. Inhibition of mevalonate pathway is involved in alendronate-induced cell growth inhibition, but not in cytokine secretion from macrophages in vitro. Eur J Pharm Sci 2003; 19(4): 223-30.
[111]
Weers J. Lipid-based compositions of antiinfectives for treating pulmonary infections and methods of use thereof. Google Patents 2017.
[112]
Kumar L, Verma S, Prasad DN, Bhardwaj A, Vaidya B, Jain AK. Nanotechnology: a magic bullet for HIV AIDS treatment. Artif Cells Nanomed Biotechnol 2015; 43(2): 71-86.
[113]
Salem II, Düzgünes N. Efficacies of cyclodextrin-complexed and liposome-encapsulated clarithromycin against mycobacterium avium complex infection in human macrophages. Int J Pharm 2003; 250(2): 403-14.
[114]
Sperduto PW, Yang TJ, Beal K, et al. Estimating survival in patients with lung cancer and brain metastases: an update of the graded prognostic assessment for lung cancer using molecular markers (Lung-molGPA). JAMA Oncol 2017; 3(6): 827-31.
[115]
Kessenbrock K, Plaks V, Werb Z. Matrix metalloproteinases: regulators of the tumor microenvironment. Cell 2010; 141(1): 52-67.
[116]
Askoxylakis V, Arvanitis CD, Wong CS, Ferraro GB, Jain RK. Emerging strategies for delivering antiangiogenic therapies to primary and metastatic brain tumors. Adv Drug Deliv Rev 2017; 119: 159-74.
[117]
Lorusso D, Bria E, Costantini A, Di Maio M, Rosti G, Mancuso A. Patients’ perception of chemotherapy side effects: expectations, doctor–patient communication and impact on quality of life–An Italian survey. Eur J Cancer Care 2017; 26(2)
[118]
Zhang JJ, Kadir TN, Silva RM. et al Effects of engineered silver
nanoparticle size in pulmonary inflammation, cytokine/chemokine
release and macrophage phenotype expression over time. B58 Occupational
Lung Disease: Case Studies, Epidemiology, and Mechanisms:
Am J Respir Crit Care Med 2017. . p. A3854-A
[119]
Nardin A, Lefebvre M, Labroquere K, Faure O, Abastado J. Liposomal muramyl tripeptide phosphatidylethanolamine: targeting and activating macrophages for adjuvant treatment of osteosarcoma. Curr Cancer Drug Targets 2006; 6(2): 123-33.
[120]
Eue I. Growth inhibition of human mammary carcinoma by liposomal hexadecylphosphocholine: participation of activated macrophages in the antitumor mechanism. Int J Cancer 2001; 92(3): 426-33.
[121]
Drewry LL, Sibley LD. Toxoplasma gondii infection reprograms
monocyte adherence and motility. The FASEB Journal 2017. 31(1 Supplement): 776.9-.9.
[122]
Park K. Trojan monocytes for improved drug delivery to the brain. Elsevier 2008.
[123]
Liu T, van Rooijen N, Tracey DJ. Depletion of macrophages reduces axonal degeneration and hyperalgesia following nerve injury. Pain 2000; 86(1): 25-32.
[124]
Sanford DE, Belt BA, Panni RZ, et al. Inflammatory monocyte mobilization decreases patient survival in pancreatic cancer: a role for targeting the CCL2/CCR2 axis. Clin Cancer Res 2013; 19(13): 3404-15.
[125]
Davignon J-L, Hayder M, Baron M, et al. Targeting monocytes/macrophages in the treatment of rheumatoid arthritis. Rheumatology 2012; 52(4): 590-8.
[126]
Richards P, Williams B, Williams A. Suppression of chronic streptococcal cell wall‐induced arthritis in Lewis rats by liposomal clodronate. Rheumatology 2001; 40(9): 978-87.
[127]
Thurlings RM, Wijbrandts CA, Bennink RJ, et al. Monocyte scintigraphy in rheumatoid arthritis: the dynamics of monocyte migration in immune-mediated inflammatory disease. PLoS One 2009; 4(11): e7865.
[128]
Brühl H, Cihak J, Plachý J, et al. Targeting of Gr‐1+, CCR2+ monocytes in collagen‐induced arthritis. Arthritis Rheumatol 2007; 56(9): 2975-85.
[129]
Kawanaka N, Yamamura M, Aita T, et al. CD14+, CD16+ blood monocytes and joint inflammation in rheumatoid arthritis. Arthritis Rheumatol 2002; 46(10): 2578-86.
[130]
Saiyed ZM, Gandhi NH, Nair MP. Magnetic nanoformulation of azidothymidine 5′-triphosphate for targeted delivery across the blood–brain barrier. Int J Nanomedicine 2010; 5: 157.
[131]
Philips JA, Rubin EJ, Perrimon N. Drosophila RNAi screen reveals CD36 family member required for mycobacterial infection. Science 2005; 309(5738): 1251-3.
[132]
Becattini S, Littmann ER, Carter RA, et al. Commensal microbes provide first line defense against Listeria monocytogenes infection. J Exp Med 2017; 214(7): 1973-89.
[133]
Dinner S, Kaltschmidt J, Stump-Guthier C, et al. Mitogen-activated protein kinases are required for effective infection of human choroid plexus epithelial cells by listeria monocytogenes. Microbes Infect 2017; 19(1): 18-33.
[134]
Shi C, Pamer EG. Monocyte recruitment during infection and inflammation. Nat Rev Immunol 2011; 11(11): 762-74.
[135]
Serbina NV, Salazar-Mather TP, Biron CA, Kuziel WA, Pamer EG. TNF/iNOS-producing dendritic cells mediate innate immune defense against bacterial infection. Immunity 2003; 19(1): 59-70.
[136]
Demers A. McNICOLL N, Febbraio M, et al Identification of the growth hormone-releasing peptide binding site in CD36: a photoaffinity cross-linking study. Biochem J 2004; 382(2): 417-24.
[137]
Ghattas A, Griffiths HR, Devitt A, Lip GY, Shantsila E. Monocytes in coronary artery disease and atherosclerosis: where are we now? J Am Coll Cardiol 2013; 62(17): 1541-51.
[138]
Palframan RT, Jung S, Cheng G, et al. Inflammatory chemokine transport and presentation in HEV. J Exp Med 2001; 194(9): 1361-74.
[139]
Geissmann F, Jung S, Littman DR. Blood monocytes consist of two principal subsets with distinct migratory properties. Immunity 2003; 19(1): 71-82.
[140]
e Silva KSF The multifaceted role of genetic polymorphisms in atherosclerosis 2018; 1(1): 1-5.
[141]
Barnes PJ. New treatments for COPD. Nat Rev Drug Discov 2002; 1(6): 437-46.
[142]
Aldonyte R, Jansson L, Piitulainen E, Janciauskiene S. Circulating monocytes from healthy individuals and COPD patients. Respir Res 2003; 4(1): 11.
[143]
Joos L, Pare PD, Sandford AJ. Genetic risk factors of chronic obstructive pulmonary disease. Swiss Med Wkly 2002; 132(3-4): 27-37.
[144]
Hume DA, Ross IL, Himes SR, Sasmono RT, Wells CA, Ravasi T. The mononuclear phagocyte system revisited. J Leukoc Biol 2002; 72(4): 621-7.
[145]
Traves S, Culpitt S, Russell R, Barnes P, Donnelly L. Increased levels of the chemokines GROα and MCP-1 in sputum samples from patients with COPD. Thorax 2002; 57(7): 590-5.