[1]
Tan, X-F.; Gao, S.; Zeng, W-J.; Xin, S.; Yin, Q.; Zhang, X-M. Asymmetric synthesis of chiral primary amines by ruthenium-catalyzed direct reductive amination of alkyl aryl ketones with ammonium salts and molecular H2. J. Am. Chem. Soc., 2018, 140, 2024-2027.
[2]
Li, Z.; Hu, B.; Wu, Y-W.; Fei, C.; Deng, L. Control of chemoselectivity in asymmetric tandem reactions: Direct synthesis of chiral amines bearing nonadjacent stereocenters. Proc. Nat. Acad. Sci., 2018, 115, 1730-1735.
[3]
Li, K-N.; Shao, X-X.; Tseng, L.; Malcolmson, S.J. 2-Azadienes as reagents for preparing chiral amines: synthesis of 1,2-amino tertiary alcohols by Cu-catalyzed enantioselective reductive couplings with ketones. J. Am. Chem. Soc., 2018, 140, 598-601.
[4]
Afewerki, S.; Córdova, A. Combinations of aminocatalysts and metal catalysts: A powerful cooperative approach in selective organic synthesis. Chem. Rev., 2016, 116, 13512-13570.
[5]
Li, W-B.; Zhang, J-L. Recent developments in the synthesis and utilization of chiral β-aminophosphine derivatives as catalysts or ligands. Chem. Soc. Rev., 2016, 45, 1657-1677.
[6]
Niu, D-W.; Buchwald, S.L. Design of modified amine transfer reagents allows the synthesis of α-chiral secondary amines via CuH-catalyzed hydroamination. J. Am. Chem. Soc., 2015, 137, 9716-9721.
[7]
Laugeois, M.; Ponra, S.; Ratovelomanana-Vidal, V.; Michelet, V.; Vitale, M.R. Asymmetric preparation of polysubstituted cyclopentanes by synergistic Pd(0)/amine catalyzed formal [3+2] cycloadditions of vinyl cyclopropanes with enals. Chem. Commun., 2016, 52, 5332-5335.
[8]
Chauhan, P.; Mahajan, S.; Enders, D. Achieving molecular complexity via stereoselective multiple domino reactions promoted by a secondary amine organocatalyst. Acc. Chem. Res., 2017, 50, 2809-2821.
[9]
Zhan, G.; Du, W.; Chen, Y-C. Switchable divergent asymmetric synthesis via organocatalysis. Chem. Soc. Rev., 2017, 46, 1675-1692.
[10]
Hayashi, Y.; Umekubo, N. Direct asymmetric Michael reaction of α,β-unsaturated aldehydes and ketones catalyzed by two secondary amine catalysts. Angew. Chem. Int. Ed., 2018, 57, 1958-1962.
[11]
Tang, L.; Luo, Y.; Xue, J-W.; He, Y-L.; Guan, Z. Highly enantioselective Michael-aldol-dehydration reaction for the synthesis of chiral 3,5-diaryl-cyclohexenones catalyzed by primary amine. Tetrahedron, 2017, 73, 1114-1119.
[12]
Sun, Y-L.; Wei, Y.; Shi, M. Applications of chiral thiourea-amine/phosphine organocatalysts in catalytic asymmetric reactions. ChemCatChem, 2017, 9, 718-727.
[13]
Cao, M-H.; Green, N.J.; Xu, S-Z. Application of the aza-Diels–Alder reaction in the synthesis of natural products. Org. Biomol. Chem., 2017, 15, 3105-3129.
[14]
Orejarena Pacheco, J.C.; Lipp, A.; Nauth, A.M.; Acke, F.; Dietz, J-P.; Opatz, T. A highly active system for the metal‐free aerobic photocyanation of tertiary amines with visible light: Application to the synthesis of tetraponerines and crispine A. Chem. Eur. J., 2016, 22, 5409-5415.
[15]
Zi, W-W.; Zuo, Z-W.; Ma, D-W. Intramolecular dearomative oxidative coupling of indoles: A unified strategy for the total synthesis of indoline alkaloids. Acc. Chem. Res., 2015, 48, 702-711.
[16]
Xiong, P.; Xu, F.; Qian, X-Y.; Yohannes, Y.; Song, J.; Lu, X.; Xu, H-C. Copper‐catalyzed intramolecular oxidative amination of unactivated internal alkenes. Chem. Eur. J., 2016, 22, 4379-4383.
[17]
Yang, Y.; Shi, S-L.; Niu, D-W.; Liu, P.; Buchwald, S.L. Catalytic asymmetric hydroamination of unactivated internal olefins to aliphatic amines. Science, 2015, 349, 62-66.
[18]
Yoshimura, A.; Nemykin, V.N.; Zhdankin, V.V. O-Alkoxyphenylimino-iodanes: Highly efficient reagents for the catalytic aziridination of alkenes and the metal‐free amination of organic substrates. Chem. Eur. J., 2011, 17, 10538-10541.
[19]
Xiong, P.; Xu, H-H.; Xu, H-C. Metal- and reagent-free intramolecular oxidative amination of tri- and tetrasubstituted alkenes. J. Am. Chem. Soc., 2017, 139, 2956-2959.
[20]
Poulsen, T.B.; Alemparte, C.; Jørgensen, K.A. Enantioselective organocatalytic allylic amination. J. Am. Chem. Soc., 2005, 127, 11614-11615.
[21]
Sánchez-Roselló, M.; Aceña, J.L.; Simón-Fuentes, A.; Pozo, C. A general overview of the organocatalytic intramolecular aza-Michael reaction. Chem. Soc. Rev., 2014, 43, 7430-7453.
[22]
Nigam, M.; Rush, B.; Patel, J.; Castillo, R.; Dhar, P. Aza-Michael reaction for an undergraduate organic chemistry laboratory. J. Chem. Educ., 2016, 93, 753-756.
[23]
Fedotova, A.; Crousse, B.; Chataigner, I.; Maddaluno, J.; Yu Alexander, R.; Legros, J. Benefits of a dual chemical and physical activation: Direct aza-Michael addition of anilines promoted by solvent effect under high pressure. J. Org. Chem., 2015, 80, 10375-10379.
[24]
Kallitsakis, M.G.; Tancini, P.D.; Dixit, M.; Mpourmpakis, G.N.; Lykakis, I.N. Mechanistic studies on the Michael addition of amines and hydrazines to nitrostyrenes: Nitroalkane elimination via a retro-aza-Henry-type process. J. Org. Chem., 2018, 83, 1176-1184.
[25]
Huang, G-L.; Li, X. Applications of Michael addition reaction in organic synthesis. Curr. Org. Synth., 2017, 14, 568-571.
[26]
Mukhopadhyay, S.; Pan, S.C. Organocatalytic asymmetric synthesis of 2,4-disubstituted imidazolidines via domino addition-aza-Michael reaction. Chem. Commun., 2018, 54, 964-967.
[27]
Sallio, R.; Lebrun, S.; Capet, F.; Agbossou-Niedercorn, F.; Michon, C.; Deniau, E. Diastereoselective auxiliary- and catalyst-controlled intramolecular aza-Michael reaction for the elaboration of enantioenriched 3-substituted isoindolinones. Application to the synthesis of a new pazinaclone analogue. Beilstein J. Org. Chem., 2018, 14, 593-602.
[28]
Gholamhassan, I.; Farzaneh, A.; Mohammadreza, Z.; Yagoub, M. Tetrabutylammonium bromide media aza-Michael addition of 1,2,3,6-tetrahydrophthalimide to symmetrical fumaric esters and acrylic esters under solvent-free conditions. Molecules, 2010, 15, 7353-7362.
[29]
Li, C.; Jiang, K.; Chen, Y-C. Diastereodivergent and enantioselective [4+2] annulations of γ-butenolides with cyclic 1-azadienes. Molecules, 2015, 20, 13642-13658.
[30]
Andersen, J.; Mack, J. Mechanochemistry and organic synthesis: from mystical to practical. Green Chem., 2018, 20, 1435-1443.
[31]
Howard, J.L.; Cao, Q.; Browne, D.L. Mechanochemistry as an emerging tool for molecular synthesis: what can it offer?. Chem. Sci., 2018, 9, 3080-3094.
[32]
Leonardi, M.; Villacampa, M.; Menendez, J.C. Multicomponent mechanochemical synthesis. Chem. Sci., 2018, 9, 2042-2064.
[33]
Chauhan, P.; Chimni, S.S. Mechanochemistry assisted asymmetric organocatalysis: A sustainable approach. Beilstein J. Org. Chem., 2012, 8, 2132-2141.
[34]
Scettri, A.; Massa, A.; Palombi, L.; Villano, R.; Acocella, M.R. Organocatalytic asymmetric aza-Michael addition of aniline to chalcones under solvent-free conditions. Tetrahedron Asymmetry, 2008, 19, 2149-2152.
[35]
Bláha, M.; Trhlíková, O.; Podešva, J.; Abbrent, S.; Steinhart, M.; Dybal, J.; Dušková-Smrčková, M. Solvent-free, catalyst-free aza-Michael addition of cyclohexylamine to diethyl maleate: Reaction mechanism and kinetics. Tetrahedron, 2018, 74, 58-67.
[36]
Zigmee, T.B.; Avijit, D.; Malabika, B.; Amrita, C.; Mainak, B. 7-Oxa-4-thia-1-aza-bicyclo[3.2.1]octane4,4-dioxides: Mechano-chemical synthesis by tandem Michael addition-1,3-dipolar cycloaddition of aldoximes and evaluation of antibacterial activities. Eur. J. Org. Chem., 2018, 506-514.
[37]
Ying, A-G.; Liu, L.; Wu, G-F.; Chen, G.; Chen, X-Z.; Ye, W-D. Aza-Michael addition of aliphatic or aromatic amines to α,β-unsaturated compounds catalyzed by a DBU-derived ionic liquid under solvent-free conditions. Tetrahedron Lett., 2009, 50, 1653-1657.
[38]
Ying, A-G.; Li, Z-F.; Yang, J-G.; Liu, S.; Xu, S-L.; Yan, H.; Wu, C-L. DABCO-based ionic liquids: recyclable catalysts for aza-Michael addition of α, β-unsaturated amides under solvent-free conditions. J. Org. Chem., 2014, 79, 6510-6516.
[39]
Enders, D.; Wang, C.; Liebich, J. Organocatalytic asymmetric Aza-Michael additions. Chemistry, 2009, 15, 11058-11076.
[40]
Brindaban, C.R.; Banerjee, S. Significant rate acceleration of the aza-Michael reaction in water. Tetrahedron Lett., 2007, 48, 141-143.
[41]
Tang, X-J.; Yan, Z-L.; Chen, W-L.; Gao, Y-R.; Yan, S-M.; Zhang, L.; Wang, Y.Q. Aza-Michael reaction promoted by aqueous sodium carbonate solution. Tetrahedron Lett., 2013, 54, 2669-2673.
[42]
Xu, L-W.; Li, J-W.; Zhou, S-L.; Xia, C-G. A green, ionic liquid and quaternary ammonium salt-catalyzed aza-Michael reaction of α,β-ethylenic compounds with amines in water. New J. Chem., 2004, 28, 183-184.
[43]
Gawande, M.B.; Bonifácio, V.D.; Luque, R.; Branco, P.S.; Varma, R.S. Solvent-free and catalysts-free chemistry: a benign pathway to sustainability. ChemSusChem, 2014, 7, 24-44.