[1]
Frye, C.A.; Bo, E.; Calamandrei, G.; Dessì-Fulgheri, C.L.F.; Fernández, M.; Fusani, L.; Kah, O.; Kajta, M.; Le Page, Y.; Patisaul, H.B.; Venerosi, A.; Wojtowicz, A.K.; Panzica, G.C. Endocrine disrupters: A review of some sources, effects, and mechanisms of actions on behaviour and neuroendocrine systems. J. Neuroendocrinol., 2012, 24(1), 144-159.
[2]
Chianese, R.; Troisi, J.; Richards, S.; Scafuro, M.; Fasano, S.; Guida, M.; Pierantoni, R.; Meccariello, R. Bisphenol A in reproduction: Epigenetic effects. Curr. Med. Chem., 2018, 25(6), 748-770.
[3]
Richter, C.A.; Birnbaum, L.S.; Farabollini, F.; Newbold, R.R.; Rubin, B.S.; Talsness, C.E.; Vandenbergh, J.G.; Walser-Kuntz, D.R.; vom Saal, F.S. In vivo effects of bisphenol A in laboratory rodent studies. Reprod. Toxicol., 2007, 24, 199-224.
[4]
Tavares, R.S.; Escada-Rebelo, S.; Correia, M.; Mota, P.C.; Ramalho-Santos, J. The non-genomic effects of endocrine-disrupting chemicals on mammalian sperm. Reprod., 2016, 151(1), R1-R13.
[5]
Peretz, J.; Vrooman, L.; Ricke, W.A.; Hunt, P.A.; Ehrlich, S.; Hauser, R.; Padmanabhan, V.; Taylor, H.S.; Swan, S.H.; VandeVoort, C.A.; Flaws, J.A. Bisphenol A and reproductive health: Update of experimental and human evidence, 2007-2013. Environ. Health Perspect., 2014, 122, 775-786.
[6]
Rubin, B.S.; Bisphenol, A. An endocrine disruptor with widespread exposure and multiple effects. J. Steroid Biochem. Mol. Biol., 2011, 127, 27-34.
[7]
Caserta, D.; Di Segni, N.; Mallozzi, M.; Giovanale, V.; Mantovani, A.; Marci, R.; Moscarini, M. Bisphenol A and the female reproductive tract: An overview of recent laboratory evidence and epidemiological studies. Reprod. Biol. Endocrinol., 2014, 12, 37.
[8]
Corrales, J.; Kristofco, L.A.; Steele, W.B.; Yates, B.S.; Breed, C.S.; Williams, E.S.; Brooks, B.W. Global assessment of Bisphenol A in the environment: Review and analysis of its occurrence and bioaccumulation. Dose-Response. An. Int. J., 2015, 13, 1-29.
[9]
Muhamad, M.S.; Salim, M.R.; Lau, W.J.; Yusop, Z. A review on bisphenol A occurrences, health effects and treatment process via membrane technology for drinking water. Environ. Sci. Pollut. Res. Int., 2016, 23, 11549-11567.
[10]
Reif, D.M.; Martin, M.T.; Tan, S.W.; Houck, K.A.; Judson, R.S.; Richard, A.M.; Knudsen, T.B.; Dix, D.J.; Kavlock, R.J. Endocrine profiling and prioritization of environmental chemicals using ToxCast data. Environ. Health Perspect., 2010, 118, 1714-1720.
[11]
Vandenberg, L.N.; Ehrlich, S.; Belcher, S.M.; Ben-Jonathan, N.; Dolinoy, D.C.; Hugo, E.R.; Hunt, P.A.; Newbold, R.R.; Rubin, B.S.; Saili, K.S.; Soto, A.M.; Wang, H.S.; Vom Saal, F.S. Low dose effects of Bisphenol A: An integrated review of in vitro, laboratory animal and epidemiology studies. Endocr. Disrupt., 2013, 1e25078
[12]
Calafat, A.M.; Ye, X.; Wong, L.Y.; Reidy, J.A.; Needham, L.L. Exposure of the U.S. population to bisphenol A and 4-tertiary-octylphenol: 2003-2004. Environ. Health Perspect., 2008, 116(1), 39-44.
[13]
Nerín, C.; Fernández, C.; Domeño, C.; Salafranca, J. Determination of potential migrants in polycarbonate containers used for microwave ovens by high-performance liquid chromatography with ultraviolet and fluorescence detection. J. Agric. Food Chem., 2003, 51, 5647-5653.
[14]
Kang, J.H.; Kito, K.; Kondo, F. Factors influencing the migration of Bisphenol A from cans. J. Food Prot., 2003, 66, 1444-1447.
[15]
Vandenberg, L.N.; Hauser, R.; Marcus, M.; Olea, N.; Welshons, W.V. Human exposure to bisphenol A (BPA). Reprod. Toxicol., 2007, 24, 139-177.
[16]
Nunez, A.A.; Kannan, K.; Giesy, J.P.; Fang, J.; Clemens, L.G. Effects of bisphenol A on energy balance and accumulation in brown adipose tissue in rats. Chemosphere, 2001, 42, 917-922.
[17]
EFSA panel on food contact materials, enzymes, flavourings and processing aids (CEF). Scientific Opinion on the risks to public health related to the presence of bisphenol A (BPA) in foodstuffs. EFSA J., 2015, 13(1), 3978.
[18]
EFSA A statement on the developmental immunotoxicity of bisphenol A (BPA): Answer to the question from the Dutch Ministry of Health, Welfare and Sport. EFSA J., 2016, 14(10), 4580.
[19]
Mørck, T.J.; Sorda, G.; Bechi, N.; Rasmussen, B.S.; Nielsen, J.B.; Ietta, F.; Rytting, E.; Mathiesen, L.; Paulesu, L.; Knudsen, L.E. Placental transport and in vitro effects of Bisphenol A. Reprod. Toxicol., 2010, 30, 131-137.
[20]
Corbel, T.; Gayrard, V.; Puel, S.; Lacroix, M.Z.; Berrebi, A.; Gil, S.; Viguié, C.; Toutain, P.L.; Picard-Hagen, N. Bidirectional placental transfer of Bisphenol A and its main metabolite, Bisphenol A glucuronide, in the isolated perfused human placenta. Reprod. Toxicol., 2014, 47, 51-58.
[21]
Mercogliano, R.; Santonicola, S. Investigation on bisphenol A levels in human milk and dairy supply chain: A review. Food Chem. Toxicol., 2018, 114, 98-107.
[22]
Legeay, S.; Faure, S. Is bisphenol A an environmental obesogen? Food Chem. Toxicol., 2018, 114, 98-107.
[23]
Murata, M.; Kang, J.H.; Bisphenol, A. BPA) and cell signaling pathways. Biotechnol. Adv., 2018, 36(1), 311-327.
[24]
Hugo, E.R.; Brandebourg, T.D.; Woo, J.G.; Loftus, J.; Alexander, J.W.; Ben-Jonathan, N. Bisphenol A at environmentally relevant doses inhibits adiponectin release from human adipose tissue explants and adipocytes. Environ. Health Perspect., 2008, 116(12), 1642-1647.
[25]
Ben-Jonathan, N.; Hugo, E.R.; Brandebourg, T.D. Effects of bisphenol A on adipokine release from human adipose tissue: Implications for the metabolic syndrome. Mol. Cell. Endocrinol., 2009, 304(1-2), 49-54.
[26]
Huc, L.; Lemarié, A.; Guéraud, F.; Héliès-Toussaint, C. Low concentrations of bisphenol A induce lipid accumulation mediated by the production of reactive oxygen species in the mitochondria of HepG2 cells. Toxicol. In Vitro, 2012, 26(5), 709-717.
[27]
Le Magueresse-Battistoni, B.; Multigner, L.; Beausoleil, C.; Rousselle, C. Effects of bisphenol A on metabolism and evidences of a mode of action mediated through endocrine disruption. Mol. Cell. Endocrinol., 2018, 475, 74-91.
[28]
Roepke, T.A.; Yang, J.A.; Yasrebi, A.; Mamounis, K.J.; Oruc, E.; Zama, A.M.; Uzumcu, M. Regulation of arcuate genes by developmental exposures to endocrine-disrupting compounds in female rats. Reprod. Toxicol., 2016, 62, 18-26.
[29]
Desai, M.; Ferrini, M.G.; Han, G.; Jellyman, J.K.; Ross, M.G. In vivo maternal and in vitro BPA exposure effects on hypothalamic neurogenesis and appetite regulators. Environ. Res., 2018, 164, 45-52.
[30]
Chianese, R.; Coccurello, R.; Viggiano, A.; Scafuro, M.; Fiore, M.; Coppola, G.; Operto, F.F.; Fasano, S. Layé, S.; Pierantoni, R.; Meccariello, R. Impact of dietary fats on brain functions. Curr. Neuropharmacol., 2018, 16(7), 1059-1085.
[31]
Chevalier, N.; Fénichel, P.; Bisphenol, A. Targeting metabolic tissues. Rev. Endocr. Metab. Disord., 2015, 16, 299-309.
[32]
Sharpe, R.M. Regulation of spermatogenesis. In: The Physiology of Reproduction; E., Knobil, Ed.; J.D. Neil, 1994; pp. 1363-1434.
[33]
Pierantoni, R.; Cobellis, G.; Meccariello, R.; Fasano, S. Evolutionary aspects of cellular communication in the vertebrate hypothalamo-hypophysio-gonadal axis. Int. Rev. Cytol., 2002, 218, 69-141.
[34]
Chianese, R.; Cobellis, G.; Chioccarelli, T.; Ciaramella, V.; Migliaccio, M.; Fasano, S.; Pierantoni, R.; Meccariello, R. Kisspeptins, estrogens and male fertility. Curr. Med. Chem., 2016, 23, 4070-4091.
[35]
Akingbemi, B.T.; Sottas, C.M.; Koulova, A.I.; Klinefelter, G.R.; Hardy, M.P. Inhibition of testicular steroidogenesis by the xenoestrogen bisphenol A is associated with reduced pituitary luteinizing hormone secretion and decreased steroidogenic enzyme gene expression in rat Leydig cells. Endocrinol, 2004, 145, 592-603.
[36]
Jin, P.; Wang, X.; Chang, F.; Bay, Y.; Li, Y.; Zhou, R.; Chen, L. Low dose bisphenol A impairs spermatogenesis by suppressing reproductive hormone production and promoting germ cell apoptosis in adult rats. J. Biomed. Res., 2013, 27(2), 135-144.
[37]
Kalb, A.C.; Kalb, A.L.; Cardoso, T.F.; Fernandes, C.G.; Corcini, C.D.; Varela, J.A.S.; Martínez, P.E. Maternal transfer of bisphenol a during nursing causes sperm impairment in male offspring. Arch. Environ. Contam. Toxicol., 2016, 70(4), 793-801.
[38]
Wang, P.; Luo, C.; Li, Q.; Chen, S.; Hu, Y. Mitochondrion-mediated apoptosis is involved in reproductive damage caused by BPA in male rats. Environ. Toxicol. Pharmacol., 2014, 38(3), 1025-1033.
[39]
Wisniewski, P.; Romano, R.M.; Kizys, M.M.; Oliveira, K.C.; Kasamatsu, T.; Giannocco, G.; Chiamolera, M.I.; Dias-da-Silva, M.R.; Romano, M.A. Adult exposure to bisphenol A (BPA) in Wistar rats reduces sperm quality with disruption of the hypothalamic-pituitary-testicular axis. Toxicol., 2015, 329, 1-9.
[40]
Adoamnei, E.; Mendiola, J.; Vela-Soria, F.; Fernández, M.F.; Olea, N.; Jørgensen, N.; Swan, S.H.; Torres-Cantero, A.M. Urinary bisphenol A concentrations are associated with reproductive parameters in young men. Environ. Res., 2018, 161, 122-128.
[41]
Chianese, R.; Viggiano, A.; Urbanek, K.; Cappetta, D.; Troisi, J.; Scafuro, M.; Guida, M.; Esposito, G.; Ciuffreda, L.P.; Rossi, F.; Berrino, L.; Fasano, S.; Pierantoni, R.; De Angelis, A.; Meccariello, R. Chronic exposure to low dose of bisphenol A impacts the first round of spermatogenesis via SIRT1 modulation. Sci. Rep., 2018, 8(1), 2961.
[42]
Ogo, F.M.; de Lion Siervo, G.E.M. Staurengo-Ferrari. L.; de Oliveira Mendes, L.; Luchetta, N.R.; Vieira, H.R.; Fattori, V.; Verri, W.A.Jr.; Scarano, W.R.; Fernandes, G.S.A. Bisphenol A Exposure Impairs Epididymal Development during the Peripubertal Period of Rats: Inflammatory Profile and Tissue Changes. Basic Clin. Pharmacol. Toxicol., 2018, 122, 262-270.
[43]
Hart, R.J.; Doherty, D.A.; Keelan, J.A.; Minaee, N.S.; Thorstensen, E.B.; Dickinson, J.E.; Pennell, C.E.; Newnham, J.P.; McLachlan, R.; Norman, R.J.; Handelsman, D.J. The impact of antenatal Bisphenol A exposure on male reproductive function at 20-22 years of age. Reprod. Biomed. Online, 2018, 36(3), 340-347.
[44]
Troisi, J.; Mikelson, C.; Richards, S.; Symes, S.; Adair, D.; Zullo, F.; Guida, M. Placental concentrations of bisphenol A and birth weight from births in the Southeastern U.S. Placenta, 2014, 35, 947-952.
[45]
Troisi, J.; Giugliano, L.; D’Antonio, A.; Viggiano, A.; Meccariello, R.; Scafuro, M.; Monda, M.; Colucci, A.; Scala, G.; Cofano, M.; Guida, M. Placental vascularization and apoptosis in rats orally exposed to low doses of Bisphenol A. Open J. Obstetrics Gynecol., 2018, 8(11), Article ID 87102, 958-969.
[46]
Leclerc, F.; Dubois, M.F.; Aris, A. Maternal, placental and fetal exposure to bisphenol A in women with and without preeclampsia. Hypert. Pregnanc, 2014, 33(3), 341-348.
[47]
Brower, V. Nutraceuticals: Poised for a healthy slice of the healthcare market? Nat. Biotechnol., 1998, 16, 728-731.
[48]
Cencic, A.; Chingwaru, W. The role of functional foods, nutraceuticals, and food supplements in intestinal health. Nutrients, 2010, 2, 611-625.
[49]
Divya, G.S.; Geetha, K.; Uma Maheswara Rao, V. Future trends in nutraceuticals - A Review. W. J. P. R., 2015, 4, 764-772.
[50]
Motti, M.L.; D’Angelo, S.; Meccariello, R. MicroRNAs, cancer and diet: Facts and new exciting perspectives. Curr. Molec. Pharmacol., 2018, 11(2), 90-96.
[51]
Rajat, S.; Manisha, S.; Robin, K. S. Nutraceuticals: A review. Int. Res. J. Pharmac., 2012, 3(4)
[52]
Kumar, P.; Kumar, N.; Omer, T. A review on nutraceutical “Critical supplement for building a healthy world”. World J. Pharm. Sci., 2016, 5(3), 579-594.
[53]
Halliwell, B. Dietary polyphenols: good, bad, or indifferent for your health? Cardiovasc. Res., 2007, 73(2), 341-347.
[54]
Laparra, J.M.; Sanz, Y. Interactions of gut microbiota with functional food components and nutraceuticals. Pharmacol. Res., 2010, 61, 219-225.
[55]
Niedzwiecki, A.; Roomi, M.W.; Kalinovsky, T.; Rath, M. Anticancer efficacy of polyphenols and their combinations. Nutrients, 2016, 8(9)
[56]
Cencic, A.; Chingwaru, W. Antimicrobial agents deriving from indigenous plants. Recent Pat. Food Nutr. Agric., 2010, 2, 83-92.
[57]
D’Angelo, S.; Martino, E.; Ilisso, C.P.; Bagarolo, M.L.; Porcelli, M.; Cacciapuoti, G. Pro-oxidant and pro-apoptotic activity of polyphenol extract from Annurca apple and its underlying mechanisms in human breast cancer cells. Int. J. Onc., 2017, 51, 939-948.
[58]
D’Angelo, S.; La Porta, R.; Napolitano, M.; Galletti, P.; Quagliuolo, L.; Boccellino, M.R. Effect of annurca apple polyphenols on human HaCaT keratinocytes proliferation. J. Med. Food, 2012, 15(11), 1024-1031.
[59]
Del Rio, D.; Rodriguez-Mateos, A.; Spencer, J.P.; Tognolini, M.; Borges, G.; Crozier, A. Dietary (poly) phenolics in human health: Structures, bioavailability, and evidence of protective effects against chronic diseases. Antioxid. Redox Signal., 2013, 18(14), 1818-1892.
[60]
Crozier, A.; Jaganath, I.B.; Clifford, M.N. Dietary phenolics: Chemistry, bioavailability and effects on health. Nat. Prod. Rep., 2009, 26(8), 1001-1043.
[61]
Tressera-Rimbau, A.; Arranz, S.; Eder, M.; Vallverdú-Queralt, A. Dietary polyphenols in the prevention of stroke. Oxid. Med. Cell. Longev., 2017.7467962
[62]
Pandey, K.B.; Rizvi, S.I. Plant polyphenols as dietary antioxidants in human health and disease. Oxid. Med. Cell. Longev., 2009, 2, 270-278.
[63]
Niedzwiecki, A.; Roomi, M.W.; Kalinovsky, T.; Rath, M. Anticancer efficacy of polyphenols and their combinations. Nutrients, 2016, 8(9)E552
[64]
Sosnowska, B.; Penson, P.; Banach, M. The role of nutraceuticals in the prevention of cardiovascular disease. Cardiovasc. Diagn. Ther., 2017, 7(1), S21-S31.
[65]
Khadem-Ansari, M.H.; Rasmi, Y.; Ramezani, F. Effects of red grape juice consumption on high density lipoprotein-cholesterol, apolipoprotein AI, apolipoprotein B and homocysteine in healthy human volunteers. Open Biochem. J., 2010, 4, 96-99.
[66]
Bui, T.T.; Nguyen, T.H. Natural product for the treatment of Alzheimer’s disease. J. Basic Clin. Physiol. Pharmacol., 2017, 28(5), 413-423.
[67]
Babaei, F.; Mirzababaei, M.; Nassiri-Asl, M. Quercetin in food: Possible mechanisms of its effect on memory. J. Food Sci., 2018, 83(9), 2280-2287.
[68]
Rauf, A.; Imran, M.; Khan, I.A.; Ur-Rehman, M.; Gilani, S.A.; Mehmood, Z.; Mubarak, M.S. Anticancer potential of quercetin: A comprehensive review. Phytother. Res., 2018, 32(11), 2109-2130.
[69]
Patel, R.V.; Mistry, B.M.; Shinde, S.K.; Syed, R.; Singh, V.; Shin, H.S. Therapeutic potential of quercetin as a cardiovascular agent. Eur. J. Med. Chem., 2018, 15(155), 889-904.
[70]
Skrovankova, S.; Sumczynski, D.; Mlcek, J.; Jurikova, T.; Sochor, J. Bioactive compounds and antioxidant activity in different types of berries. Int. J. Mol. Sci., 2015, 16(10), 24673-24706.
[71]
Nancy, N.; Zikri, K.; Riedl, M.; Li-Shu, W.; Lechner, J.F.; Schwartz, S.J.; Gary, D.; Black, S. Raspberry components inhibit proliferation, induce apoptosis and modulate gene expression in rat esophageal epithelial cells. Nutr. Cancer. Nutr. Cancer, 2009, 61(6), 816-826.
[72]
Rahmani, A.H.; Alsahli, M.A.; Aly, S.M.; Khan, M.A.; Aldebasi, Y.H. Role of curcumin in disease prevention and treatment. Adv. Biomed. Res., 2018, 7, 38.
[73]
Pajari, A.M.; Päivärinta, E.; Paavolainen, L.; Vaara, E.; Koivumäki, T.; Garg, R.; Heiman-Lindh, A.; Mutanen, M.; Marjomäki, V.; Ridley, A.J. Ellagitannin-rich cloudberry inhibits hepatocyte growth factor induced cell migration and phosphatidylinositol 3-kinase/AKT activation in colon carcinoma cells and tumors in Min mice. Oncotarget, 2016, 7(28), 43907-43923.
[74]
Reddy, R.C.; Vatsala, P.G.; Keshamouni, V.G.; Padmanaban, G.; Rangarajan, P.N. Curcumin for malaria therapy. Biochem. Biophys. Res. Commun., 2005, 326, 472-474.
[75]
Aggarwal, B.B.; Harikumar, K.B. Potential therapeutic effects of curcumin, the anti-inflammatory agent, against neurodegenerative, cardiovascular, pulmonary, metabolic, autoimmune and neoplastic diseases. Int. J. Biochem. Cell Biol., 2009, 41(1), 40-59.
[76]
Sarkar, A.; De, R.; Mukhopadhyay, A.K. Curcumin as a potential therapeutic candidate for Helicobacter pylori associated diseases. World J. Gastroenterol., 2016, 22, 2736.
[77]
Liao, S.; Xia, J.; Chen, Z.; Chen, Z.; Zhang, S.; Ahmad, A.; Miele, L.; Sarkar, F.H.; Wang, Z. Inhibitory effect of curcumin on oral carcinoma CAL-27 cells via suppression of Notch-1 and NF-κB signaling pathways. J. Cell. Biochem., 2011, 112(4), 1055-1065.
[78]
Zhou, S.; Zhang, S.; Shen, H.; Chen, W.; Xu, H.; Chen, X.; Sole, D.; Zhong, S.; Zhao, J.; Tang, J. Curcumin inhibits cancer progression through regulating expression of microRNAs. Tumour Biol., 2017, 39(2), 1-12.
[79]
Tian, B.; Zhao, Y.; Liang, T.; Ye, X.; Li, Z.; Yan, D.; Fu, Q.; Li, Y. Curcumin inhibits urothelial tumor development by suppressing IGF2 and IGF2-mediated PI3K/AKT/mTOR signaling pathway. J. Drug Target., 2017, 25(7), 626-636.
[80]
Zhang, H.; Xu, W.; Li, B.; Zhang, K.; Wu, Y.; Xu, H.; Wang, J.; Zhang, J.; Fan, R.; Wei, J. Curcumin promotes cell cycle arrest and inhibits survival of human renal cancer cells by negative modulation of the PI3K/AKT signaling pathway. Cell Biochem. Biophys., 2015, 73(3), 681-686.
[81]
Mudduluru, G.; George-William, J.N.; Muppala, S.; Asangani, I.A.; Kumarswamy, R.; Nelson, L.D.; Allgayer, H. Curcumin regulates miR-21 expression and inhibits invasion and metastasis in colorectal cancer. Biosci. Rep., 2011, 31(3), 185-197.
[82]
Saini, S.; Arora, S.; Majid, S.; Shahryari, V.; Chen, Y.; Deng, G.; Yamamura, S.; Ueno, K.; Dahiya, R. Curcumin modulates microRNA-203-mediated regulation of the Src-Akt axis in bladder cancer. Cancer Prev. Res. (Phila.), 2011, 4(10), 1698-1709.
[83]
Zhu, X.; Zhu, R. Curcumin suppresses the progression of laryngeal squamous cell carcinoma through the upregulation of miR-145 and inhibition of the PI3K/Akt/mTOR pathway. OncoTargets Ther., 2018, 19(11), 3521-3531.
[84]
Spagnuolo, C.; Russo, G.L.; Orhan, I.E.; Habtemariam, S.; Daglia, M.; Sureda, A.; Nabavi, S.F.; Devi, K.P.; Loizzo, M.R.; Tundis, R.; Nabavi, S.M. Genistein and cancer: Current status, challenges, and future directions. Adv. Nutr., 2015, 6(4), 408-419.
[85]
Pavese, J.M.L.; Farmer, R.L.; Bergan, R.C. Inhibition of cancer cell invasion and metastasis by genistein. Canc Metastas Rev., 2010, 29(3), 465-482.
[86]
Ravindranath, M.H.L.; Muthugounder, S.; Presser, N.; Viswanathan, S. Anticancer therapeutic potential of soy isoflavone, genistein. Adv. Exp. Med. Biol., 2004, 546, 121-165.
[87]
Gupta, S.C.; Kim, J.H.; Prasad, S.; Aggarwal, B.B. Regulation of survival, proliferation, invasion, angiogenesis, and metastasis of tumor cells through modulation of inflammatory pathways by nutraceuticals. Cancer Metastasis Rev., 2010, 29(3), 405-434.
[88]
Zhao, S.; Liu, H.; Gu, L. American cranberries and health benefits - an evolving story of 25 years. J. Sci. Food Agric., 2018. Jan 9. doi: 10.1002/jsfa.8882 [Epub ahead of print].
[89]
D’Angelo, S.; Sammartino, D. Protective Effect of Annurca Apple Extract Against Oxidative Damage in Human Erythrocytes. Curr. Nutr. Food Sci., 2015, 11(4), 248-256.
[90]
Mangels, D.R.; Mohler, E.R. Catechins as potential mediators of cardiovascular health. Arterioscler. Thromb. Vasc. Biol., 2017, 37(5), 757-763.
[91]
Han, X.D.; Zhang, Y.Y.; Wang, K.L.; Huang, Y.P.; Yang, Z.B.; Liu, Z. The involvement of Nrf2 in the protective effects of (-)-Epigallocatechin-3-gallate (EGCG) on NaAsO2-induced hepatotoxicity. Oncotarget, 2017, 8(39), 65302-65312.
[92]
Tessier, A.J.; Chevalier, S. An update on protein, leucine, omega-3 fatty acids, and vitamin D in the prevention and treatment of sarcopenia and functional decline. Nutrients, 2018, 10(8)E1099
[93]
Shirooie, S.; Nabavi, S.F.; Dehpour, A.R.; Belwal, T.; Habtemariam, S.; Argüelles, S.; Sureda, A.; Daglia, M.; Tomczyk, M.; Sobarzo-Sanchez, E.; Xu, S.; Nabavi, S.M. Targeting mTORs by omega-3 fatty acids: A possible novel therapeutic strategy for neurodegeneration? Pharmacol. Res., 2018, 135, 37-48.
[94]
Milani, A.; Basirnejad, M.; Shahbazi, S.; Bolhassani, A. Carotenoids: Biochemistry, pharmacology and treatment. Br. J. Pharmacol., 2017, 174(11), 1290-1324.
[95]
Evans, J.A.; Johnson, E.J. The role of phytonutrients in skin health. Nutrients, 2010, 2(8), 903-928.
[96]
Borek, C. Garlic reduces dementia and heart-disease risk. J. Nutr., 2006, 136, 810S-812S.
[97]
Silagy, C.; Neil, A. Garlic as a lipid lowering agent: A meta-analysis. J. R. Coll. Physic Lond., 1994, 28, 39-45.
[98]
Li, S.; Chen, S.; Yang, W.; Liao, L.; Li, S.; Li, J.; Zheng, Y.; Zhu, D. Allicin relaxes isolated mesenteric arteries through activation of PKA-KATP channel in rat. J. Rec. Sign. Trans. Res., 2017, 37, 17-24.
[99]
Kong, X.; Gong, S.; Su, L.; Li, C.; Kong, Y. Neuroprotective effects of allicin on ischemia-reperfusion brain injury. Oncotarget, 2017, 8(61), 104492-104507.
[100]
Wang, J. Chen, Chen, Z.J.; Meng, W.; Hai J.; Xiaoying, Z. Protective effect of Cordyceps militaris extract against bisphenol A induced reproductive damage. Syst Biol Reprod Med, 2016, 62(4), 249-257.
[101]
Geng, S.; Wang, S.; Zhu, W.; Xie, C.; Li, X.; Wu, J.; Zhu, J.; Jiang, Y.; Yang, X.; Li, Y. Curcumin attenuates BPA-induced insulin resistance in HepG2 cells through suppression of JNK/p38 pathways. Toxicol. Lett., 2017, 272, 75-83.
[102]
Wang, J.; Jenkins, S.; Lamartiniere, C.A. Cell proliferation and apoptosis in rat mammary glands following combinational exposure to bisphenol A and genistein. BMC Cancer, 2014, 14, 379.
[103]
Jahan, S.; Ain, Q.U.; Ullah, H. Therapeutic effects of quercetin against bisphenol A induced testicular damage in male Sprague Dawley rats. Syst Biol Reprod Med, 2016, 62(2), 114-124.
[104]
Mlynarcikova, A.B.; Scsukova, S. Endocrine disruptors, nutraceuticals and their simultaneous effects in hormone-sensitive tissues: A Rev. Res. Rev. J. Pharm. Pharmac. Sci., 2016, 5(2), 12-20.
[105]
Kuruto-Niwa, R.; Inoue, S.; Ogawa, S.; Muramatsu, M.; Nozawa, R. Effects of tea catechins on the ERE-regulated estrogenic activity. J. Agric. Food Chem., 2000, 48(12), 6355-6361.
[106]
Oishi, K.; Sato, T.; Yokoi, W.; Yoshida, Y. Effect of Probiotics, Bifidobacterium breve and Lactobacillus casei, on Bisphenol A Exposure in Rats. Biosci. Biotechnol. Biochem., 2008, 72(6), 1409-1415.
[107]
Veiga-Lopez, A.; Pennathur, S.; Kannan, K.; Patisaul, H.B.; Dolinoy, D.C.; Zeng, L.; Padmanabhan, V. Impact of gestational bisphenol A on oxidative stress and free fatty acids: Human association and interspecies animal testing studies. Endocrinol, 2015, 156, 911-922.
[109]
Lee, S.; Kim, Y.K.; Shin, T.Y.; Kim, S.H. Neurotoxic effects of bisphenol AF on calcium-induced ROS and MAPKs. Neurot. Res., 2013, 23(3), 249-529.
[110]
Wang, A.; Li, R.; Ren, L.; Gao, X.; Zhang, Y.; Ma, Z.; Ma, D.; Luo, Y. A comparative metabolomics study of flavonoids in sweet potato with different flesh colors (Ipomoea batatas (L.) Lam). Food Chem., 2018, 260, 124-134.
[111]
Rajendran, R.; Kulanthaivel, L.; Subbaraj, G.; Shanmugam, V.; Peranandam, T.; Maruthaiveeran, P.B. Anti-infertility significance of aqueous extract of Ipomoea batatas (L.) Lam. against exposure of bisphenol A (BPA) promoted testicular toxicity in male Sprague Dawley rats. Asian Pac. J. Reprod., 2013, 2(4), 263-271.
[112]
Park, B.; Kwon, J.E.; Cho, S.M.; Kim, C.W.; Lee, D.E.; Koo, Y.T.; Lee, S.H.; Lee, H.M.; Kang, S.C. Protective effect of Lespedeza cuneata ethanol extract on Bisphenol A-induced testicular dysfunction in vivo and in vitro. Biom. Pharmac., 2018, 102, 76-85.
[113]
Türedi, S.; Yuluğ, E.; Alver, A.; Kutlu, O.; Kahraman, C. Effects of resveratrol on doxorubicin induced testicular damage in rats. Experiment. Toxicol. Pathol., 2015, 67, 229-235.
[114]
Tamilselvan, P.; Bharathiraja, K.; Vijayaprakash, S.; Balasubramanian, M.P. Protective role of lycopene on bisphenol A induced changes in sperm characteristics, testicular damage and oxidative stress in rats. Int. J. Pharm Bio Sci., 2013, 4(4), 131-143.
[115]
Koda, T.; Morita, M.; Imai, H. Retinoic acid inhibits uterotrophic activity of bisphenol A in adult ovariectomized rats. J. Nutr. Sci. Vitaminol., 2007, 53(5), 432-436. [Tokyo].
[116]
Sharman, E.H.; Bondy, S.C. Melatonin: A safe nutraceutical and clinical agent. in nutraceuticals efficacy, safety and toxicity,, 2016, Chapter 36, pp. 501-509.
[117]
Anjum, S.; Rahman, S.; Kaur, M.; Ahmad, F.; Rashid, H.; Ansari, R.A.; Raisuddin, S. Melatonin ameliorates bisphenol A-induced biochemical toxicity in testicular mitochondria of mouse. Food Chem. Toxicol., 2011, 49(11), 2849-2854.
[118]
Wu, H.J.; Liu, C.; Duan, W.X.; Xu, S.C.; He, M.D.; Chen, C.H.; Wang, Y.; Zhou, Z.; Yu, Z.P.; Zhang, L.; Chen, Y. Melatonin ameliorates bisphenol A-induced DNA damage in the germ cells of adult male rats. Mutat. Res., 2013, 752(1-2), 57-67.
[119]
Othman, A.I.; Edrees, G.M.; El-Missiry, M.A.; Ali, D.A.; Aboel-Nour, M.; Dabdoub, B.R. Melatonin controlled apoptosis and protected the testes and sperm quality against bisphenol A-induced oxidative toxicity. Toxicol. Ind. Health, 2016, 32(9), 1537-1549.
[120]
Olukole, S.G.; Ajani, S.O.; Ola-Davies, E.O.; Lanipekun, D.O.; Aina, O.O.; Oyeyemi, M.O.; Oke, B.O. Melatonin ameliorates bisphenol A-induced perturbations of the prostate gland of adult Wistar rats. Biomed. Pharmacother., 2018, 105, 73-82.
[121]
Dernek, D.; Ömeroğlu, S.; Akçay, N.C.; Kartal, B.; Dizakar, S.Ö.A.; Türkoğlu, İ.; Aydin, V. Possible effects of melatonin against rat uterus exposure to bisphenol A during neonatal period. Environ. Sci. Pollut. Res. Int., 2017, 24(34), 26829-26838.
[122]
Zhang, M.; Dai, X.; Lu, Y.; Miao, Y.; Zhou, C.; Cui, Z.; Liu, H.; Xiong, B. Melatonin protects oocyte quality from Bisphenol A-induced deterioration in the mouse. J. Pineal Res., 2017, 62(3)
[123]
Zhang, T.; Zhou, Y.; Li, L.; Zhao, Y.; De Felici, M.; Reiter, R.J.; Shen, W. Melatonin protects prepuberal testis from deleterious effects of bisphenol A or diethylhexyl phthalate by preserving H3K9 methylation. J. Pineal Res., 2018, 65(2)e12497
[124]
Wu, G.; Song, D.; Wei, Q.; Xing, J.; Shi, X. Shi. F. Melatonin mitigates bisphenol A-induced estradiol production and proliferation by porcine ovarian granulosa cells in vitro. Anim. Reprod. Sci., 2018, 192, 91-98.
[125]
Lopes, J.; Arnosti, D.; Trosko, J.E.; Tai, M.H.; Zuccari, D. Melatonin decreases estrogen receptor binding to estrogen response elements sites on the OCT4 gene in human breast cancer stem cells. Genes Cancer, 2016, 7(5-6), 209-217.
[126]
Wang, T.; Liu, B.; Guan, Y.; Gong, M.; Zhang, W.; Pan, J.; Liu, Y.; Liang, R.; Yuan, Y.; Ye, L. Melatonin inhibits the proliferation of breast cancer cells induced by bisphenol A via targeting estrogen receptor-related pathways. Thorac. Cancer, 2018, 9(3), 368-375.
[127]
Dolinoy, D.C.; Huang, D.; Jirtle, R.L. Maternal nutrient supplementation counteracts bisphenol A-induced DNA hypomethylation in early development. Proc. Natl. Acad. Sci. USA, 2007, 104, 13056-13061.
[128]
Rosenfeld, C.S.; Sieli, P.T.; Warzak, D.A.; Ellersieck, M.R.; Pennington, K.A.; Roberts, R.M. Maternal exposure to bisphenol A and genistein has minimal effect on Avy/a offspring coat color but favors birth of agouti over nonagouti mice. Proc. Natl. Acad. Sci. USA, 2013, 110, 537-542.
[129]
Sidorkiewicz, I.; Czerniecki, J.; Jarząbek, K.; Zbucka-Krętowska, M.; Wołczyński, S. Cellular, transcriptomic and methylome effects of individual and combined exposure to BPA, BPF, BPS on mouse spermatocyte GC-2 cell line. Toxicol. Appl. Pharmacol., 2018, 359, 1-11.