Generic placeholder image

Current Organocatalysis

Editor-in-Chief

ISSN (Print): 2213-3372
ISSN (Online): 2213-3380

Research Article

Supramolecular Macrostructures in the Mechanisms of Catalysis with Nickel or Iron Heteroligand Complexes

Author(s): L.I. Matienko*, V.I. Binyukov, E.M. Mil and G.E. Zaikov

Volume 6, Issue 1, 2019

Page: [36 - 43] Pages: 8

DOI: 10.2174/2213337206666181231120410

Abstract

Background: The AFM-techniques have been used for the research of the role of intermolecular H-bonds and stable supramolecular nanostructures, based on effective catalysts of oxidation processes, which are also models of Ni(Fe)ARD Dioxygenases, in mechanisms of catalysis.

Methods and Results: The role of Histidine and Tyrosine ligands in the mechanisms of catalysis by FeARD on model systems is discussed based on AFM and UV-Spectroscopy data.

Conclusion: We first offer the new approach – method of atomic force microscopy (AFM) – to study the possibility of the formation of supramolecular nanostructures, and also for assessing of role the intermolecular hydrogen bonds (and the other intermolecular non-covalent interactions) in mechanisms of homogeneous and enzymatic catalysis with nickel and iron complexes.

Keywords: AFM method, dioxygen, homogeneous and enzymatic catalysis, L-Histidine, L-Tyrosine, models of Ni(Fe)ARD dioxygenases, nanostructures based on nickel and iron complexes, oxidation.

Graphical Abstract

[1]
Matienko, L.I.; Mosolova, L.A.; Zaikov, G.E. Selective catalytic hydrocarbons oxidation. New Perspectives, New York: Nova Science Publ. Inc., USA, 2010. 150 P.
[2]
Leininger, S.; Olenyuk, B.; Stang, P.J. Self-Assembly of discrete cyclic nanostructures mediated by transition metals. Chem. Rev., 2000, 100, 853-908.
[3]
Dai, Y.; Pochapsky, Th.C.; Abeles, R.H. Mechanistic studies of two dioxygenases in the methionine salvage pathway of Klebsiella pneumonia. Biochemistry, 2001, 40, 6379-6387.
[4]
Gopal, B.; Madan, L.L.; Betz, S.F.; Kossiakoff, A.A. The crystal structure of a quercetin 2,3-dioxygenase from Bacillus subtilis suggests modulation of enzyme activity by a change in the metal ion at the active site(s). Biochemistry, 2005, 44, 193-201.
[5]
Balogh-Hergovich, E.; Kaizer, J.; Speier, G. Kinetics and mechanism of the Cu(I) and Cu(II) flavonolate-catalyzed oxygenation of flavonols, functional quercetin 2,3-dioxygenase models. J. Mol. Сatal. A: Сhem., 2000, 159, 215-224.
[6]
Straganz, G.D.; Nidetzky, B. Reaction coordinate analysis for β-diketone cleavage by the non-Heme Fe2+-Dependent Dioxygenase DKE 1. J. Am. Chem. Soc., 2005, 127, 12306-12314.
[7]
Matienko, L.I.; Mosolova, L.A. Mechanism of selective catalysis with triple system bis(acetylacetonate)Ni(II)+metalloligand+ phenol in ethylbenzene oxidation with dioxygen. Role of H-bonding interactions. Oxid. Commun., 2014, 37, 20-31.
[8]
Matienko, L.I.; Mosolova, L.A.; Binyukov, V.I.; Mil, E.M.; Zaikov, G.E. Chapter 5. The Role of supramolecular nanostructures formation in the mechanisms of homogenous and enzymatic catalysis with nickel or iron complexes: in Book:Chemical Analysis Modern Materials Evaluation and Testing Methods (Eds. Ana C. F. Ribeiro, Cecilia I. A. V. Santos, and Gennady E. Zaikov; (Toronto, New Jersey: Apple Academic Press. , 2016. 73-95.
[9]
Matienko, L.I.; Mosolova, L.A.; Binyukov, V.I.; Mil, E.M. Zaikov “The new approach to research of mechanism catalysis with nickel complexes in alkylarens oxidation” “Polymer Yearbook” 2011; N.-Y. Nova Science Publ., 2012, pp. 221-230.
[10]
Matienko, L.I.; Mosolova, L.A.; Binyukov, V.I.; Mil, E.M. Zaikov, Supramolecular nanostructures on the basis of catalytic active heteroligand nickel complexes and their possible roles in chemical and biological systems. J. Biol. Res., 2012, 1, 37-44.
[11]
Matienko, L.I.; Mosolova, L.A.; Binyukov, V.I.; Mil, E.M. Zaikov, Triple systems, based on NiII(acac)2, Introduced ligands-modifiers HMPA, N-metylpirrolidon-2, PhOH or L-tyrosine, as effective catalysts in selective ethyl benzene oxidation with dioxygen, and as models of Ni-ARD Dioxygenase. Oxid. Commun., 2017, 40, 569-579.
[12]
Dubey, M.; Koner, R.R.; Ray, M. Sodium and potassium ion directed self-assembled multinuclear assembly of divalent nickel or copper and L-Leucine derived ligand. Inorg. Chem., 2009, 48, 9294-9302.
[13]
Basiuk, E.V.; Basiuk, V.V.; Gomez-Lara, J.; Toscano, R.A. A bridged high-spin complex bis-[Ni(II)(rac-5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane)]-2,5-pyridinedicaboxylate diperchlorate monohydrate. J. Incl. Phenom. Macrocycl. Chem., 2000, 38, 45-56.
[14]
Mukherjee, P.; Drew, M.G.B.; Gómez-Garcia, C.J.; Ghosh, A. (Ni2), (Ni3), and (Ni2 + Ni3): A unique example of isolated and cocrystallized Ni2 and Ni3 Complexes. Inorg. Chem., 2009, 48, 4817-4825.
[15]
Stang, P.J.; Olenyuk, B. Self-assembly, symmetry, and molecular architecture: coordination as the Motif in the rational design of supramolecular metallacyclic polygons and polyhedral. Acc. Chem. Res., 1997, 30, 502-518.
[16]
Drain, C.M.; Varotto Radivojevic, A.I. Self-organized porphyrinic materials. Chem. Rev., 2009, 109, 1630-1658.
[17]
Beletskaya, I.; Tyurin, V.S.; Tsivadze, A.Yu.; Guilard, R.; Stem, Ch. Supramolecular chemistry of metalloporphyrins. Chem. Rev., 2009, 109, 1659-1713.
[18]
Deshpande, A.R.; Pochapsky, T.C.; Ringe, D. The metal drives the chemistry: dual functions of acireductone dioxygenase. Chem. Rev., 2017, 117, 10474-10501.
[19]
Deshpande, A.R.; Wagenpfail, K.; Pochapsky, T.C.; Petsko, G.A.; Ringe, D. Metal-dependent function of a mammalian acireductone dioxygenase. Biochemistry, 2016, 55, 1398-1407.
[20]
Leitgeb, St.; Straganz, G.D.; Nidetzky, B. Functional characterization of an orphan cupin protein from Burkholderia xenovorans reveals a mononuclear nonheme Fe2+-dependent oxygenase that cleaves β-diketones. The FEBS Journal,, 2009, 276, 5983-5997.
[21]
Mbughuni, M.M.; Meier, K.K.; Münck, E.; Lipscomb, J.D. Substrate-mediated oxygen activation by homoprotocatechuate 2,3-dioxygenase: intermediates formed by a tyrosine 257 variant. Biochemistry, 2012, 51, 8743-8754.
[22]
Horowitz, S.; Dirk, L.M.A.; Yesselman, J.D.; Nimtz, J.S.; Adhikari, U.; Mehl, R.A.; Scheiner, St.; Houtz, R.L.; Al-Hashimi, H.M.; Trievel, R.C. Conservation and functional importance of carbon–oxygen hydrogen bonding in AdoMet-dependent methyltransferases. J. Am. Chem. Soc., 2013, 135, 15536-15548.
[23]
Matienko, L.I.; Binykov, V.; Mil, E.; Zaikov, G. Application of new approach (AFM method) for studying the role of supramolecular structures in action of acireducton diooxygenases. J. Chem. & Chem. Tech., 2018, 41(43), 429-439.
[24]
Matienko, L.I.; Mosolova, L.A. Effect of small concentrations of water on ethylbenzene oxidation with molecular oxygen catalyzed by iron(ii, iii) acetylacetonate complexes with 18-crown-6. Petroleum Chemistry, 2008, 48, 371-380.
[25]
Matienko, L.I.; Mosolova, L.A.; Skibida, I.P. Composition catalysts of ethylbenzene oxidation based on bis(acetylacetonato) nickel(II) and phase transfer catalysts as ligands. 2. Quaternary ammonium salts. Russ. Chem. Bull., 1994, 43, 1337-1342.
[26]
Patel, N.; Ramachandran, S.; Azimov, R.; Kagan, B.L.; Lal, L. Ion channel formation by tau protein: implications for alzheimer’s disease and tauopathies. Biochemistry, 2015, 54, 7320-7325.

© 2024 Bentham Science Publishers | Privacy Policy