Generic placeholder image

Current Applied Polymer Science

Editor-in-Chief

ISSN (Print): 2452-2716
ISSN (Online): 2452-2724

Review Article

Dielectric Properties of Polymer Composites with Nanocarbon Allotropes

Author(s): Vitaliy G. Shevchenko*, Polina M. Nedorezova and Alexander N. Ozerin

Volume 3, Issue 2, 2019

Page: [85 - 97] Pages: 13

DOI: 10.2174/2452271603666181228120700

Price: $65

Abstract

Background: The paper describes the types and electrical properties of polymer nanocomposites containing carbon allotropes.

Objective: Direct current conductivity, conduction in percolation systems, conduction mechanisms and factors controlling conductivity and percolation parameters are considered.

Method: The dielectric properties of polymer nanocomposites are presented, and experimental methods and methods for analyzing the results have also been described. An analysis of the data on ac electrical conductivity, including the contribution of nanofiller - interfacial polarization is presented. Special consideration is given to the role of nanocarbons as dielectric probes.

Results: The microwave properties of polymer nanocomposites, their use to estimate the distribution of nanofiller in the matrix, as well as practical applications for shielding and absorption of electromagnetic radiation have been analyzed.

Conclusion: The use of carbon allotropes nanoparticles as fillers with high electrical conductivity provides polymer composites with useful electrical properties, including the ability to absorb highfrequency electromagnetic radiation.

Keywords: Dielectric properties, electrical conductivity, fillers, nanocarbon, nanocomposites, polymer composites.

« Previous
Graphical Abstract

[1]
Sadasivuni KK, Ponnamma D, Kim J, Thomas S. Graphene-based polymer nanocomposites in electronics. Switzerland: Springer International Publishing 2015.
[http://dx.doi.org/10.1007/978-3-319-13875-6]
[2]
Tjong SC, Mai YW. Physical properties and applications of polymer nanocomposites. Cambridge: Woodhead publishing 2010.
[http://dx.doi.org/10.1533/9780857090249]
[3]
Akasaka T, Wudl F, Nagas S. Chemistry of Nanocarbons. UK: John Wiley & Sons Ltd 2010.
[4]
Inagaki M, Kang F, Toyoda M, Konno H. Advanced Materials Science and Engineering of Carbon. Oxford, UK: Butterworth-Heinemann 2014.
[5]
Delhaes P. Carbon-based solids and materials. London, UK: ISTE Ltd 2011.
[6]
Krueger A. Carbon materials and nanotechnology. Weinheim: Wiley-VCH Verlag 2010.
[7]
Gogotsi Y, Presser V. Carbon nanomaterials. Boca Raton: CRC Press 2006.
[http://dx.doi.org/10.1201/9781420009378]
[8]
Wernik JM, Meguid SA. Recent developments in multifunctional nanocomposites using carbon nanotubes. Appl Mech Rev 2010; 63(5)050801
[http://dx.doi.org/10.1115/1.4003503]
[9]
Spitalsky Z, Tasis D, Papagelis K, Galiotis C. Carbon nanotube-polymer composites: Chemistry, processing, mechanical and electrical properties. Prog Polym Sci 2010; 35: 357-401.
[http://dx.doi.org/10.1016/j.progpolymsci.2009.09.003]
[10]
Randviir EP, Brownson DAC, Banks CE. A decade of graphene research: Production, applications and outlook. Mater Today 2014; 17(9): 426-32.
[http://dx.doi.org/10.1016/j.mattod.2014.06.001]
[11]
Boudenne A, Ibos L, Candau Y, Thomas S. Handbook of multiphase polymer systems. US: John Wiley and Sons Ltd 2011.
[http://dx.doi.org/10.1002/9781119972020]
[12]
Friedrich K, Ulf Breuer U. Multifunctionality of polymer composites Challenges and new solutions. Oxford, UK: Elsevier 2015.
[13]
McLachlan DS, Godfrey Sauti G. The AC and DC conductivity of nanocomposites. J Nanomater 2007; 2007(Article ID 30389)9
[14]
Kim H, Abdala AA, Macosko CW. Graphene/Polymer nanocomposites. Macromolecules 2010; 43: 6515-30.
[http://dx.doi.org/10.1021/ma100572e]
[15]
Potts JR, Dreyer DR, Bielawski CW, Ruoff RS. Graphene-based polymer nanocomposites. Polymer (Guildf) 2011; 52: 5-25.
[16]
Lux F. Models proposed to explain the electrical conductivity of mixtures made of conductive and insulating materials. J Mater Sci 1993; 28: 285-301.
[http://dx.doi.org/10.1007/BF00357799]
[17]
Roldughin VI, Vysotskii VV. Percolation properties of metal-filled polymer films, structure and mechanisms of conductivity. Prog Org Coat 2000; 39: 81-100.
[http://dx.doi.org/10.1016/S0300-9440(00)00140-5]
[18]
Zallen R. The physics of amorphous solids. New York: Wiley 2004.
[19]
Jäger KM, McQueen DH, Tchmutin IA, Ryvkina NG, Klüppel M. Electron transport and ac electrical properties of carbon black polymer composites. J Phys D Appl Phys 2001; 34: 2699-707.
[http://dx.doi.org/10.1088/0022-3727/34/17/319]
[20]
Kilbribe BE, Coleman JN, Fraysse J, et al. Experimental observation of scaling laws for alternating current and direct current conductivity in polymer-carbon nanotube composite thin films. J Appl Phys 2002; 92: 4024-30.
[http://dx.doi.org/10.1063/1.1506397]
[21]
Barrau S, Demont P, Peigney A, Laurent C, Lacabanne C. DC and AC conductivity of carbon nanotubes−polyepoxy composites. Macromolecules 2003; 36: 5187-94.
[http://dx.doi.org/10.1021/ma021263b]
[22]
Clayton LM, Knudsen B, Cinke M, Meyyappan M, Harmon JP. DC conductivity and interfacial polarization in PMMA/nanotube and PMMA/soot composites. J Nanosci Nanotechnol 2007; 7(10): 3572-9.
[http://dx.doi.org/10.1166/jnn.2007.850] [PMID: 18330175]
[23]
Liang GD, Tjong SC. Electrical properties of percolative polystyrene/carbon nanofiber composites. IEEE Trans Dielectr Electr Insul 2008; 15(1): 214-20.
[http://dx.doi.org/10.1109/T-DEI.2008.4446753]
[24]
He F, Lau S, Chan HL, Fan J. High dielectric permittivity and low percolation threshold in nanocomposites based on poly(vinylidene fluoride) and exfoliated graphite nanoplates. Adv Mater 2009; 21: 710-5.
[http://dx.doi.org/10.1002/adma.200801758]
[25]
Sun Y, Ha-Da B, Zhao-Xia G, Yu J. Modeling of the electrical percolation of mixed carbon fillers in polymer-based composites. Macromolecules 2009; 42: 459-63.
[http://dx.doi.org/10.1021/ma8023188]
[26]
Du F, Scogna RC, Zhou W, Brand S, Fischer JE, Winey KI. Nanotube networks in polymer nanocomposites: Rheology and electrical conductivity. Macromolecules 2004; 37: 9048-55.
[http://dx.doi.org/10.1021/ma049164g]
[27]
Carponcin D, Dantras E, Dandurand J, et al. Aridon G, Levallois F, Cadiergues L, Colette L Discontinuity of physical properties of carbon nanotube/polymer composites at the percolation threshold. J Non-Cryst Solids 2014; 392-393: 19-25.
[http://dx.doi.org/10.1016/j.jnoncrysol.2014.03.022]
[28]
Mott NF. Conduction in non-crystalline materials. Oxford: Clarendon Press 1987.
[29]
Psarras GC. Hopping conductivity in polymer matrix-metal particles composites. Compos Part A - Appl S 2006; 37: 1545-53.
[http://dx.doi.org/10.1016/j.compositesa.2005.11.004]
[30]
Böttger H, Bryskin VV. Hopping conduction in solids. Berlin: Verlag Akademie 1985.
[31]
Pollak M, Shklovskii IB. Hopping transport in solids. Amsterdam: Elsevier 1991.
[http://dx.doi.org/10.1016/B978-0-444-88037-6.50013-0]
[32]
Mott NF. Metal-insulator transitions. London: CRC Press 1990.
[http://dx.doi.org/10.1201/b12795]
[33]
Dyre JC. The random free‐energy barrier model for AC conduction in disordered solids. J Appl Phys 1998; 64(5): 2456-68.
[http://dx.doi.org/10.1063/1.341681]
[34]
Dyre JC, Shrøder TB. Universality of AC conduction in disordered solids. Rev Mod Phys 2000; 72(3): 873-92.
[http://dx.doi.org/10.1103/RevModPhys.72.873]
[35]
Dyre JC, Schrøder T. B Hopping models and AC universality. Phys Status Solidi, B Basic Res 2002; 230(1-5): 5-13.
[http://dx.doi.org/10.1002/1521-3951(200203)230:1<5:AID-PSSB5>3.0.CO;2-J]
[36]
Schrøder TB, Dyre JC. Computer simulations of the random barrier model. Phys Chem Chem Phys 2002; 4: 3173-8.
[http://dx.doi.org/10.1039/b111361e]
[37]
Edward P. Randviir, Dale A.C. Brownson, Craig E. Banks A decade of graphene research: production, applications and outlook. Mater Today 2014; 17(9): 426-32.
[http://dx.doi.org/10.1016/j.mattod.2014.06.001]
[38]
Syurik YV, Ghislandi MG, Tkalya EE, et al. Graphene network organisation in conductive polymer composites. Macromol Chem Phys 2012; 213: 1251-8.
[http://dx.doi.org/10.1002/macp.201200116]
[39]
Socher R, Krause B, Müller MT, Boldt R, Pötschke P. The influence of matrix viscosity on MWCNT dispersion and electrical properties in different thermoplastic nanocomposites. Polymer (Guildf) 2012; 53: 495-504.
[http://dx.doi.org/10.1016/j.polymer.2011.12.019]
[40]
Li Y, Zhu J, Wei S, et al. Poly(propylene) nanocomposites containing various carbon nanostructures. Macromol Chem Phys 2011; 212(22): 2429-38.
[41]
Sandler JKW, Kirk JE, Kinloch IA, Shaffer MSP, Windle AH. Ultra-low electrical percolation threshold in carbon-nanotube-epoxy composites. Polymer (Guildf) 2003; 44: 5893-9.
[http://dx.doi.org/10.1016/S0032-3861(03)00539-1]
[42]
Potschke P, Dudkin SM, Alig I. Dielectric spectroscopy on melt processed polycarbonate-multiwalled carbon nanotube composites. Polymer (Guildf) 2003; 44: 5023-30.
[http://dx.doi.org/10.1016/S0032-3861(03)00451-8]
[43]
Nogales A, Broza G, Roslainec Z, et al. Low percolation threshold in nanocomposites based on oxidized single wall carbon nanotubes and poly(butylene terephthalate). Macromolecules 2004; 37: 7669-72.
[http://dx.doi.org/10.1021/ma049440r]
[44]
Galpaya D, Wang M, Liu M, Motta N, Waclawik E, Yan C. Recent advances in fabrication and characterization of graphene-polymer nanocomposites. Graphene 2012; 1: 30-49.
[http://dx.doi.org/10.4236/graphene.2012.12005]
[45]
Agnelli S, Cipolletti V, Musto S, et al. Interactive effects between carbon allotrope fillers on the mechanical reinforcement of polyisoprene based nanocomposites. Express Polym Lett 2014; 8(6): 436-49.
[http://dx.doi.org/10.3144/expresspolymlett.2014.47]
[46]
Verdejo R, Bernal MM, Romasanta LJ, Lopez-Manchado MA. Graphene filled polymer nanocomposites. J Mater Chem 2011; 21: 3301-10.
[47]
Bauhofer W, Schulz SC, Eken AE, et al. Shear-controlled electrical conductivity of carbon nanotubes networks suspended in low and high molecular weight liquids. Polymer (Guildf) 2010; 51: 5024-7.
[http://dx.doi.org/10.1016/j.polymer.2010.09.013]
[48]
Otten RHJ, van der Schoot P. Connectivity percolation of polydisperse anisotropic nanofillers. J Chem Phys 2011; 134(9)094902
[http://dx.doi.org/10.1063/1.3559004] [PMID: 21384998]
[49]
Tkalya E, Ghislandi M, Otten R, et al. Experimental and theoretical study of the influence of the state of dispersion of graphene on the percolation threshold of conductive graphene/polystyrene nanocomposites. ACS Appl Mater Interfaces 2014; 6(17): 15113-21.
[http://dx.doi.org/10.1021/am503238z] [PMID: 25116440]
[50]
Rafiee MA, Rafiee J, Wang Z, Song H, Yu ZZ, Koratkar N. Enhanced mechanical properties of nanocomposites at low graphene content. ACS Nano 2009; 3(12): 3884-90.
[http://dx.doi.org/10.1021/nn9010472] [PMID: 19957928]
[51]
Ren P-G, Di Y-Y, Zhang Q, Li L, Pang H, Li Z-M. Composites of ultrahigh‐molecular‐weight polyethylene with graphene sheets and/or mwcnts with segregated network structure: Preparation and properties. Macromol Mater Eng 2012; 297: 437-43.
[http://dx.doi.org/10.1002/mame.201100229]
[52]
Pang H, Chen T, Zhang G, Zeng B, Li Z-M. An electrically conducting polymer/graphene composite with a very low percolation threshold. Mater Lett 2010; 64(20): 2226-9.
[http://dx.doi.org/10.1016/j.matlet.2010.07.001]
[53]
Thostenson E, Li C, Chou T. Nanocomposites in context. Compos Sci Technol 2005; 65(3-4): 491-516.
[http://dx.doi.org/10.1016/j.compscitech.2004.11.003]
[54]
Lebedev OV, Ozerin AN, Kechek’yan AS, et al. Strengthened electrically conductive composite materials based on ultra-high-molecular-weight polyethylene reactor powder and nanosized carbon fillers. Nanotechnol Russ 2015; 10(1): 42-52.
[http://dx.doi.org/10.1134/S1995078015010115]
[55]
Lebedev OV, Kechek’Yan AS, Shevchenko VG, Kurkin TS, Beshenko MA, Ozerin AN. Strengthened electrically conductive composites based on ultra-high-molecular-weight polyethylene filled with fine graphite. Dokl Chem 2014; 456(2): 87-90.
[http://dx.doi.org/10.1134/S0012500814060020]
[56]
Stankovich S, Dikin DA, Dommett GHB, et al. Graphene-based composite materials. Nature 2006; 442(7100): 282-6.
[http://dx.doi.org/10.1038/nature04969] [PMID: 16855586]
[57]
Haggenmueller R, Gommans HH, Rinzler AG, Fischer JE, Winey KI. Aligned single-wall carbon nanotubes in composites by melt processing methods. Chem Phys Lett 2000; 330(3-4): 219-25.
[http://dx.doi.org/10.1016/S0009-2614(00)01013-7]
[58]
Hicks J, Behnam A, Ural A. A computational study of tunneling-percolation electrical transport in graphene based nanocomposites. Appl Phys Lett 2009; 95(21)213103
[http://dx.doi.org/10.1063/1.3267079]
[59]
Li J, Kim J-K. Percolation threshold of conducting polymer composites containing 3D randomly distributed graphite nanoplatelets. Compos Sci Technol 2007; 67(10): 2114-20.
[http://dx.doi.org/10.1016/j.compscitech.2006.11.010]
[60]
Eda G, Chhowalla M. Graphene-based composite thin films for electronics. Nano Lett 2009; 9(2): 814-8.
[http://dx.doi.org/10.1021/nl8035367] [PMID: 19173637]
[61]
Tkalya EE, Ghislandi M, de With G, Koning CE. The use of surfactants for dispersing carbon nanotubes and graphene to make conductive nanocomposites. Curr Opin Colloid Interface Sci 2012; 17(4): 225-32.
[http://dx.doi.org/10.1016/j.cocis.2012.03.001]
[62]
Roy N, Sengupta R, Bhowmick AK. Modifications of carbon for polymer composites and nanocomposites. Prog Polym Sci 2012; 37: 781-819.
[http://dx.doi.org/10.1016/j.progpolymsci.2012.02.002]
[63]
Miltner HE, Watzeels N, Gotzen N-A, et al. The effect of nano-sized filler particles on the crystalline-amorphous interphase and thermal properties in polyester nanocomposites. Polymer (Guildf) 2012; 53: 1494-506.
[64]
Wan C, Chen B. Reinforcement and interphase of polymer/graphene oxide nanocomposites. J Mater Chem 2012; 22: 3637-46.
[http://dx.doi.org/10.1039/c2jm15062j]
[65]
Zhang H-B, Zheng W-G, Yan Q, Jiang Z-G, Yu Z-Z. The effect of surface chemistry of graphene on rheological and electrical properties of polymethylmethacrylate composites. Carbon 2012; 50(14): 5117-25.
[http://dx.doi.org/10.1016/j.carbon.2012.06.052]
[66]
Tantis I, Psarras GC, Tasis D. Functionalized graphene - poly(vinyl alcohol) nanocomposites: Physical and dielectric properties. Express Polym Lett 2012; 6(4): 283-92.
[http://dx.doi.org/10.3144/expresspolymlett.2012.31]
[67]
Kremer F, Schonhals A. Broadband dielectric spectroscopy. Berlin: Springer 2002.
[68]
Psarras GC. Conductivity and dielectric characterization of polymer nanocomposites. In: Tjong SC, Mai YM, Eds. Physical properties and applications of polymer nanocomposites. Cambridge: Woodhead publishing 2010; pp. 31-69.
[http://dx.doi.org/10.1533/9780857090249.1.31]
[69]
Runt JP, Fitzgerald JJ. Dielectric spectroscopy of polymeric materials. Washington, DC: ACS 1999.
[70]
Chanmal C, Jog J. Dielectric relaxation spectroscopy for polymer nanocomposites.characterization techniques for polymer nanocomposites. In: Mittal V, Ed. Characterization techniques for polymer nanocomposites. Germany: Wiley-VCH Verlag GmbH & Co. Weinheim 2012; pp. 167-84.
[http://dx.doi.org/10.1002/9783527654505.ch7]
[71]
Tsangaris GM, Psarras GC, Kouloumbi N. Electric modulus and interfacial polarization in composite polymeric systems. J Mater Sci 1998; 33: 2027-37.
[http://dx.doi.org/10.1023/A:1004398514901]
[72]
von Hippel AR. Dielectrics and waves. Boston: Artech 1995.
[73]
Grannan DM, Garland JC, Tanner DB. Critical behavior of the dielectric constant of a random composite near the percolation threshold. Phys Rev Lett 1981; 46(5): 375-7.
[http://dx.doi.org/10.1103/PhysRevLett.46.375]
[74]
Linares A, Canalda JC, Cagiao ME, et al. Broad-Band Electrical Conductivity of High Density Polyethylene Nanocomposites with Carbon Nanoadditives: Multiwall Carbon Nanotubes and Carbon Nanofibers. Macromolecules 2008; 41: 7090-7.
[http://dx.doi.org/10.1021/ma801410j]
[75]
Psarras GC, Manolakaki E, Tsangaris GM. Electrical relaxations in polymeric particulate composites of epoxy resin and metal particles. Compos Part A - Appl S 2002; 33: 375-84.
[http://dx.doi.org/10.1016/S1359-835X(01)00117-8]
[76]
Jonscher AK. Universal relaxation law. London: Chelsea Dielectrics Press 1992.
[77]
Tsangaris GM, Psarras GC, Manolakaki E. DC and AC conductivity in polymeric particulate composites of epoxy resin and metal particles. Adv Compos Lett 1999; 8(1): 25-9.
[http://dx.doi.org/10.1177/096369359900800104]
[78]
Shevchenko VG, Polschikov SV, Nedorezova PM, et al. In situ polymerized poly(propylene)/graphene nanoplatelets nanocomposites: Dielectric and microwave properties. Polymer (Guildf) 2012; 53(23): 5330-5.
[http://dx.doi.org/10.1016/j.polymer.2012.09.018]
[79]
Boyd RH, Liu F. Dielectric spectroscopy of semicrystalline Polymers. In: Runt JP, Fitzgerald JJ, Eds. Dielectric spectroscopy of polymeric materials. Washington, DC: ACS 1999; pp. 107-36.
[80]
Steeman PAM, van Turnhout J. Dielectric properties of inhomogeneous media. In: Kremer F, Schönhals A, Eds. Broadband dielectric spectroscopy. Berlin, Heidelberg: Springer 2003; pp. 495-522.
[http://dx.doi.org/10.1007/978-3-642-56120-7_13]
[81]
Hedvig P. Dielectric spectroscopy of polymers. Bristol: Adam Hilger Ltd 1977.
[82]
Schönhals A. Dielectric properties of amorphous polymers. In: Runt JP, Fitzgerald JJ, Eds. Dielectric spectroscopy of polymeric materials. Washington, DC: ACS 1999; pp. 81-106.
[83]
Strümpler R, Glatz-Reichenbach J. Conducting polymer composites. J Electroceram 1999; 3(4): 329-46.
[http://dx.doi.org/10.1023/A:1009909812823]
[84]
Pikhurov DV, Zuev VV. The effect of fullerene C60 on the mechanical and dielectrical behavior of epoxy resins at low loading. Nanosystems: Phys Chem Math 2013; 4(6): 834-43.
[85]
van den Berg O, Sengers WGF, Jager WF, Picken SJ, Wubbenhorst M. Dielectric and fluorescent probes to investigate glass transition, melt, and crystallization in polyolefins. Macromolecules 2004; 37: 2460-70.
[http://dx.doi.org/10.1021/ma0305333]
[86]
Kessairi K, Napolitano S, Capaccioli S, Rolla PA, Wubbenhorst M. Molecular dynamics of atactic poly(propylene) investigated by broadband dielectric spectroscopy. Macromolecules 2007; 40: 1786-8.
[http://dx.doi.org/10.1021/ma070141m]
[87]
Shevchenko VG, Polschikov SV, Nedorezova PM, Klyamkina AN, Aladyshev AM, Chvalun SN. Graphene nanoplatelets and fullerene in polypropylene matrix as nanosized dielectric probe. Polym Compos 2015; 36: 1006-11.
[http://dx.doi.org/10.1002/pc.23447]
[88]
Bychanok D, Kuzhir P, Maksimenko S, Bellucci S, Brosseau C. Characterizing epoxy composites filled with carbonaceous nanoparticles from dc to microwave. J Appl Phys 2013.113124103
[http://dx.doi.org/10.1063/1.4798296]
[89]
Koval’chuk AA, Shchegolikhin A, Shevchenko VG, et al. Synthesis and properties of polypropylene/multiwall carbon nanotube composites. Macromolecules 2008; 41(9): 3149-56.
[90]
Kovalchuk AA, Shevchenko VG, Shchegolikhin AN, Nedorezova PM, Klyamkina AN, Aladyshev AM. Isotactic and syndiotactic polypropylene/multi-wall carbon nanotube composites: Synthesis and properties. J Mater Sci 2008; 43(22): 7132-40.
[http://dx.doi.org/10.1007/s10853-008-3029-8]
[91]
Koval’chuk AA, Shevchenko VG, Shchegolikhin AN, Nedorezova PM, Klyamkina AN, Aladyshev AM. Effect of carbon nanotube functionalization on the structural and mechanical properties of polypropylene/MWCNT composites. Macromolecules 2008; 41(20): 7536-42.
[http://dx.doi.org/10.1021/ma801599q]
[92]
Pol’shchikov SV, Nedorezova PM, Klyamkina AN, et al. Composite materials based on graphene nanoplatelets and polypropylene derived via in situ polymerization. Nanotechnol Russ 2013; 8(1-2): 69-80.
[http://dx.doi.org/10.1134/S1995078013010114]
[93]
Polschikov SV, Nedorezova PM, Klyamkina AN, et al. Composite materials of graphene nanoplatelets and polypropylene, prepared by in situ polymerization. J Appl Polym Sci 2013; 127(2): 904-11.
[http://dx.doi.org/10.1002/app.37837]
[94]
Polshchikov SV, Nedorezova PM, Komkova OM, et al. Synthesis by polymerization in situ and properties of composite materials based on syndiotactic polypropylene and carbon nanofillers. Nanotechnol Russ 2014; 9(3-4): 175-83.
[http://dx.doi.org/10.1134/S1995078014020128]
[95]
Choudhary V, Dhawan SK, Saini P. Polymer based nanocomposites for electromagnetic interference (EMI) shielding. In: Jaroszewski M, Jan Ziaja, Eds. EM shielding - theory and development of new materials. Kerala, India: Research Signpost 2012, pp. 1-33.
[96]
Singh K, Dhaw OA. Polymer-graphene nanocomposites: Preparation, characterization, properties, and applications. In: Ebrahimi F, Ed. Nanocomposites - New trends and developments. InTech 2012; pp. 37-71.
[97]
Liao L, Duan X. Graphene for radio frequency electronics. Mater Today 2012; 15(7-8): 328-38.
[http://dx.doi.org/10.1016/S1369-7021(12)70138-4]
[98]
Bhattacharyya A, Joshi M. Functional properties of microwave absorbent nanocomposite coatings based on thermoplastic polyurethane‐based and hybrid carbon‐based nanofillers. Polym Adv Technol 2012; 23: 975-83.
[http://dx.doi.org/10.1002/pat.2000]
[99]
Chung DDL. Electromagnetic interference shielding effectiveness of carbon materials. Carbon 2001; 39(2): 279-85.
[http://dx.doi.org/10.1016/S0008-6223(00)00184-6]
[100]
Huang JC. EMI shielding plastics: A review. Adv Polym Technol 1995; 14(2): 137-50.
[http://dx.doi.org/10.1002/adv.1995.060140205]
[101]
Chung DDL. Electrical applications of carbon materials. J Mater Sci 2004; 39(8): 2645-61.
[http://dx.doi.org/10.1023/B:JMSC.0000021439.18202.ea]
[102]
Jou WS, Cheng HZ, Hsu CF. The electromagnetic shielding effectiveness of carbon nanotubes polymer composites. J Alloys Compd 2007; 434-435: 641-5.
[http://dx.doi.org/10.1016/j.jallcom.2006.08.203]
[103]
Yang Y, Gupta MC, Dudley KL, Lawrence RW. A comparative study of EMI shielding properties of carbon nanofiber and multi-walled carbon nanotube filled polymer composites. J Nanosci Nanotechnol 2005; 5(6): 927-31.
[http://dx.doi.org/10.1166/jnn.2005.115] [PMID: 16060155]
[104]
Li Y, Chen C, Zhang S, Ni Y, Huang J. Electrical conductivity and electromagnetic interference shielding characteristics of multiwalled carbon nanotube filled polyacrylate composite films. Appl Surf Sci 2008; 254(18): 5766-71.
[http://dx.doi.org/10.1016/j.apsusc.2008.03.077]
[105]
Bai X, Zhai Y, Zhang Y. Green approach to prepare graphene-based composites with high microwave absorption capacity. J Phys Chem C 2011; 115(23): 11673-7.
[http://dx.doi.org/10.1021/jp202475m]
[106]
Fang J-J, Li S-F, Zha W-K. Cong H-Y, Chen J-F, Chen Z-Z. Microwave absorbing properties of nickel-coated graphene. J Inorg Mater 2011; 26(5): 467-71.
[107]
Zhang HB, Yan Q, Zheng WG, He Z, Yu ZZ. Tough graphene-polymer microcellular foams for electromagnetic interference shielding. ACS Appl Mater Interfaces 2011; 3(3): 918-24.
[http://dx.doi.org/10.1021/am200021v] [PMID: 21366239]
[108]
Liang J, Wang Y, Huang Y, et al. Electromagnetic interference shielding of graphene/epoxy composites. Carbon 2009; 47(3): 922-5.
[109]
Eswaraiah V, Sankaranarayanan V, Ramaprabhu S. Functionalized graphene-PVDF FOAM COMPOSITES for EMI shielding. Macromol Mater Eng 2011; 296(10): 894-8.
[http://dx.doi.org/10.1002/mame.201100035]
[110]
De Bellis G, De Rosa IM, Dinescu A, Sarto MS, Tamburrano A. Electromagnetic absorbing nanocomposites including carbon fibers, nanotubes and graphene Nanoplatelets. 2010; IEEE International Symposium on Electromagnetic Compatibility (EMC 2010) 202-7.
[http://dx.doi.org/10.1109/ISEMC.2010.5711272]
[111]
Kumar DC, Bhattacharya P, Kalra SS. Graphene and MWCNT: Potential candidate for microwave absorbing materials. J Mat Sci Res 2012; 1(2): 126-32.
[112]
Al-Hartomy OA, Al-Ghamdi AA, Al-Salamy F, et al. Dielectric and microwave properties of graphene nanoplatelets/carbon black filled natural rubber composites. Int J Mater Chem 2012; 2(3): 116-22.
[http://dx.doi.org/10.5923/j.ijmc.20120203.06]
[113]
Basavaraja C, Kim WJ, Kim YD, Huh DS. Synthesis of polyaniline-gold/graphene oxide composite and microwave absorption characteristics of the composite films. Mater Lett 2011; 65(19-20): 3120-3.
[http://dx.doi.org/10.1016/j.matlet.2011.06.110]
[114]
Saini P, Aror M. Microwave absorption and emi shielding behavior of nanocomposites based on intrinsically conducting polymers, graphene and carbon nanotubes. In: De Souza Gomes A, Ed. New polymers for special applications. InTech 2012; pp. 71-112.
[115]
Al-Saleh MH, Sundararaj U. Electromagnetic interference shielding mechanisms of CNT/polymer composites. Carbon 2009; 47: 1738-46.
[http://dx.doi.org/10.1016/j.carbon.2009.02.030]
[116]
Li Q, Xue Q, Hao L, Gao X, Zheng Q. Large dielectric constant of the chemically functionalized carbon nanotube/polymer composites. Compos Sci Technol 2008; 68: 2290-6.
[http://dx.doi.org/10.1016/j.compscitech.2008.04.019]
[117]
Putz MV, Ori O. Exotic properties of carbon nanomatter Dordrecht: Springer Science+Business Media. 2015.
[118]
Che BD, Nguyen BQ, Nguyen LT, et al. The impact of different multi-walled carbon nanotubes on the X-band microwave absorption of their epoxy nanocomposites. Chem Cent J 2015; 9: 10.
[http://dx.doi.org/10.1186/s13065-015-0087-2]
[119]
Fahmy TYA, Mobarak F, El-Meligy MG. Introducing undeinked old newsprint as a new resource of electrical purposes paper. Wood Sci Technol 2008; 42(8): 691-8.
[http://dx.doi.org/10.1007/s00226-008-0180-y]
[120]
Fahmy TYA, El-Meligy MG, Mobarak F. Introducing deinked old newsprint as a new resource of electrical purposes paper. Carbohydr Polym 2008; 74(3): 442-4.
[http://dx.doi.org/10.1016/j.carbpol.2008.03.016]
[121]
Fahmy Y, Fahmy TYA, Mobarak F, El-Sakhawy M, Fadl MH. Agricultural residues (wastes) for manufacture of paper, board, and miscellaneous products: Background overview and future prospects. Int J Chemtech Res 2017; 10(2): 424-48.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy