[1]
Katritzky, A.R.; Ramsden, C.A.; Joule, J.; Zhdankin, V. Handbook of Heterocyclic Chemistry, 3rd ed; Elsevier: Amsterdam, 2010.
[2]
Belenky, P.; Bogan, K.L.; Brenner, C. NAD+ metabolism in health and disease. Trends Biochem. Sci., 2007, 32, 12-19.
[3]
Pollak, N.; Dölle, C.; Ziegler, M. The power to reduce: Pyridine nucleotides - small molecules with a multitude of functions. Biochem. J., 2007, 402, 205-218.
[4]
Fujimoto, K.; Morisaki, D.; Yoshida, M.; Namba, T.; Hye-Sook, K.; Wataya, Y.; Kourai, H.; Kakuta, H.; Sasaki, K. Antimalarial effect of bis-pyridinium salts, N,N′-hexamethylenebis(4-carbamoyl-1-alkylpyridinium bromide). Bioorg. Med. Chem. Lett., 2006, 16, 2758-2760.
[5]
Alptüzün, V.; Parlar, S.; Taşlı, H.; Erciyas, E. Synthesis and antimicrobial activity of some pyridinium salts. Molecules, 2009, 14, 5203-5215.
[6]
Plunkett, A.O. Pyrrole, pyrrolidine, pyridine, piperidine, and azepine alkaloids. Nat. Prod. Rep., 1994, 11, 581-590.
[7]
Fusetani, N.; Asai, N.; Matsunaga, S.; Honda, K.; Yasumuro, K. Cyclostellettamines A-F, pyridine alkaloids which inhibit binding of methyl quinuclidinyl benzilate (QNB) to muscarinic acetylcholine receptors, from the marine sponge, Stelletta maxima. Tetrahedron Lett., 1994, 35, 3967-3970.
[8]
Tsuda, M.; Shigemori, H.; Ishibashi, M.; Kobayashi, J. Purealidin D, a new pyridine alkaloid from the okinawan marine sponge Psammaplysilla purea. Tetrahedron Lett., 1992, 33, 2597-2598.
[9]
Vafadarnejad, F.; Mahdavi, M.; Karimpour-Razkenari, E.; Edraki, N.; Sameem, B.; Khanavi, M.; Saeedi, M.; Akbarzadeh, T. Design and synthesis of novel coumarin-pyridinium hybrids: In vitro cholinesterase inhibitory activity. Bioorg. Chem., 2018, 77, 311-319.
[10]
Wu, Y.; Klein, V.; Killian, M.; Behling, C.; Chea, S.; Tsogoeva, S.; Bachmann, J. Novel fully organic water oxidation electrocatalysts: A quest for simplicity. ACS Omega, 2018, 3, 2602-2608.
[11]
Harjani, R.D.; Singer, M.T.; Garciac, P.J. Biodegradable pyridinium ionic liquids: Design, synthesis and evaluation. Green Chem., 2009, 11, 83-90.
[12]
Ilies, M.A.; Seitz, W.A.; Ghiviriga, I.; Johnson, B.H.; Miller, A.; Thompson, E.B.; Balaban, A.T. Pyridinium cationic lipids in gene delivery: A structure-activity correlation study. J. Med. Chem., 2004, 47(15), 3744-3754.
[13]
Günther, A.; Soroka, A.J. The main synthesis of pyrylium salts. Wiadomości. Chem, 2017, 72(1-2), 87-108.
[14]
Liao, J.; Guan, W.; Boscoe, B.P.; Tucker, J.W.; Tomlin, J.W.; Garnsey, M.R.; Watson, M.P. Transforming benzylic amines into diarylmethanes: Cross-couplings of benzylic pyridinium salts via C-N bond activation. Org. Lett., 2018, 20(10), 3030-3033.
[15]
Nozoe, T.; Takase, K.; Shimazaki, N. The synthesis of diethyl 2-hydroxyazulene-1, 3-dicarboxylate from troponoids and some reactions of 2-hydroxyazulene derivatives. Bull. Chem. Soc. Japan., 1964, 37, 1644-1648.
[16]
McRae, J.A.; Moir, R.Y.; Ursprung, J.J.; Gibbs, H.H. Reactions of the iodometameconines. J. Org. Chem., 1954, 19, 1500-1508.
[17]
Barnett, B. Beiträge zur Kenntnis der Anthracen-Derivate (I. Mitteil). Ber. Dtsch. Chem. Ges., 1930, 63, 1690-1697.
[18]
Boyd, G.V. An aza-analogue of N-phyridinium cyclopentadienide. Tetrahedron Lett., 1966, 29, 3369-3371.
[19]
Letsinger, R.L.; Ramsay, O.B.; McCain, J.H. Photoinduced substitution. II. Substituent effects in nucleophilic displacement on substituted nitrobenzenes. J. Am. Chem. Soc., 1965, 87, 2945-2953.
[20]
Steller, E.K.; Letsinger, R.L. Photoinduced substitution. VIII. Effects of distant substituents on photoinduced aromatic substitution reactions. J. Org. Chem., 1970, 35, 308-313.
[21]
Nesmeyanov, A.N. The position of substituents in ferrocene compounds, as determined from infrared absorption spectra. Dokl. Akad. Nauk SSSR, 1957, 117, 1049.
[22]
Marek, J.; Stodulka, P.; Cabal, J.; Soukup, O.; Pohanka, M.; Korabecny, J.; Musilek, K.; Kuca, K. Preparation of the pyridinium salts differing in the length of the N-alkyl substituent. Molecules, 2010, 15(3), 1967-1972.
[23]
Olah, G.A.; Narang, S.C.; Olah, J.A.; Pearson, R.L.; Cupas, C.A. Aromatic substitution. 45. Transfer nitration of aromatics with N-nitropyridinium and quinolinium ions. J. Am. Chem. Soc., 1980, 102, 3507-3510.
[24]
Popov, A.I.; Rygg, R.H. Studies on the chemistry of halogens and of polyhalides. XI. Molecular complexes of pyridine, 2-picoline and 2,6-lutidine with iodine and iodine halides. J. Am. Chem. Soc., 1957, 79, 4622-4625.
[25]
Caron, S.; Nga, M.D.; Sieser, J.E. A practical, efficient, and rapid method for the oxidation of electron deficient pyridines using trifluoroacetic anhydride and hydrogen peroxide-urea complex. Tetrahedron Lett., 2000, 41(14), 2299-2302.
[26]
Rezki, N.; Al-Sodies, S.A.; Aouad, M.R.; Bardaweel, S.; Messali, M.; El Ashry, E.S.H. An eco-friendly ultrasound-assisted synthesis of novel fluorinated pyridinium salts-based hydrazones and antimicrobial and antitumor screening. Int. J. Mol. Sci., 2016, 17(5), 766.
[27]
Hou, Q.; Xu, J.; Yu, J.; Wang, T.; Xu, J. Synthesis and structural characterization of three copper coordination polymers with pyridine derivatives from hydro (solvo) thermal in situ decarboxylation reactions of 2,5-dicarboxylpyridine. J. Solid State Chem., 2010, 183, 1561-1566.
[28]
Zincke, T.; Mühlhausen, G. Ueber arylaminderivate, des furfurols und deren umwandlung in pyridinverbindungen. Ber. Dtsch. Chem. Gesellschaft., 1905, 38, 3824-3829.
[29]
Paulsen, H.; Todt, K.; Heyns, K. Monosaccharide mit stickstoffhaltigem Ring, IV. 5-Alkylamino-zucker und deren Umwandlung in N-Alkyl-pyridiniumsalze. Eur. J. Org. Chem., 1964, 679(1), 168-177.
[30]
Petersen, J.B.; Norris, K.; Clauson-Kaas, N.; Svanholt, K. New method for the preparation of quaternary 3-hydroxypyridinium chlorides. Acta Chem. Scand., 1969, 23, 1785-1790.
[31]
Unheim, K.; Gacek, M. N-quaternary compounds. Part X. Further syntheses of pyridinium-3-oxide derivatives from amino acids. Acta Chem. Scand., 1969, 23, 2488-2500.
[32]
Unheim, K.; Johan, R.; Greibrokk, T. N-quaternary compounds. Part XI. The synthesis of dihydrothiazolo[3,2-a]pyridinium-8-oxide derivatives from L-cysteine. Acta Chem. Scand., 1969, 23, 2501-2504.