[1]
Marella, A.; Tanwar, O.P.; Saha, R.; Ali, M.R.; Srivastava, S.; Akhter, M.; Shaquiquzzaman, M.; Alam, M.M. Quinoline: A versatile heterocyclic. Saudi Pharm. J., 2013, 21, 1-12.
[2]
Bharate, J.B.; Vishwakarma, R.A.; Bharate, S.B. Metal-free domino one-pot protocols for quinoline synthesis. RSC Advances, 2015, 5, 42020-42053.
[3]
Barbosa-Lima, G.; Da Silveira Pinto, L.S.; Kaiser, C.R.; Wardell, J.L.; De Freitas, C.S.; Vieira, Y.R.; Marttorelli, A.; Cerbino Neto, J.; Bozza, P.T.; Wardell, S.M.S.V.; de Souza, M.V.N.; Souza, T.M.L. N-(2-(arylmethylimino)ethyl)-7-chloroquinolin-4-amine derivatives, synthesized by thermal and ultrasonic means, are endowed with anti-Zika virus activity. Eur. J. Med. Chem., 2017, 127, 434-441.
[4]
Barbosa-Lima, G.; Moraes, A.M.; Araújo, A.D.S.; da Silva, E.T.; de Freitas, C.S.; Vieira, Y.R.; Marttorelli, A.; Neto, J.C.; Bozza, P.T.; de Souza, M.V.N.; Souza, T.M.L. 2,8-bis(trifluoro-methyl) quinoline analogs show improved anti-Zika virus activity, compared to mefloquine. Eur. J. Med. Chem., 2017, 127, 334-340.
[5]
Singh, A.; Prakash, V.; Kant, S.; Kumar, R.; Bhatia, A.; Verma, A.K.; Srivastava, A. Bedaquiline: A new hope in treatment of tuberculosis. Int. J. Health Allied Sci., 2016, 5(3), 172-173.
[6]
Naidoo, S.; Jeena, V. Synthesis of 2,4-disubstituted quinoline derivatives via a3-coupling: An EcoScale evaluation. Synthesis, 2017, 49, 2621-2631.
[7]
Broman, G.I.; Robèrt, K-H. A framework for strategic sustainable development. J. Clean. Prod., 2017, 140, 17-31.
[8]
Hejazi, S.Z.; Shojaei, A.F.; Tabatabaeian, K.; Shirini, F. Preparation and characterization of ZrO2-supported Fe3O4-MNPs as an effective and reusable superparamagnetic catalyst for the Friedländer synthesis of quinoline derivatives. J. Serb. Chem. Soc., 2015, 80(8), 971-982.
[9]
More, P.A.; Shankarling, G.S. Energy efficient Pfitzinger reaction: A novel strategy using a surfactant catalyst. New J. Chem., 2017, 41, 12380-12383.
[11]
Ahmed, W.; Zhang, S.; Yu, X.; Yamamoto, Y.; Bao, M. Brønsted acid-catalyzed metal- and solvent-free quinoline synthesis from N-alkyl anilines and alkynes or alkenes. Green Chem., 2018, 20, 261-265.
[12]
Yahya, S.; Beheshtiha, S.H.; Majid, M.; Dehghani, M. Sulfamic acid: An efficient and recyclable solid acid catalyst for the synthesis of quinoline-4-carboxylic acid derivatives in water. Mod. Chem. APPL, 2016, 4(4), 1-6.
[13]
Shahabi, D.; Tavakol, H. One-pot synthesis of quinoline derivatives using choline chloride/tin (II) chloride deep eutectic solvent as a green catalyst. J. Mol. Liq., 2016, 220, 324-328.
[14]
Sapkota, K.; Han, S.S. A novel environmentally sustainable synthesis of Au-Ag@AgCl nanocomposites and their application as an efficient and recyclable catalyst for quinoline synthesis. New J. Chem., 2017, 41, 5395-5402.
[15]
Li, A.; Huang, C.; Luo, C-W.; Yi, W-J.; Chao, Z-S. High-efficiency catalytic performance over mesoporous Ni/beta zeolite for the synthesis of quinoline from glycerol and aniline. RSC Advances, 2017, 7, 9551-9561.