[1]
(a) Fabre, C.E.; Blanc, P.J.; Goma, G. Biotechnol. Prog., 1988, 14(2), 270-274.
(b) Knasko, S.C. Chem. Senses, 1992, 17(1), 27-35.
[2]
Van Vuuren, S.F.; Viljoen, A.M. Flavour Fragr J., 2007, 22(6), 540-544.
[3]
Mattos, M.; Bernini, R.B. J. Braz. Chem. Soc., 2007, 18(5), 1068-1072.
[4]
(a) Katritzky, A.R.; Marson, C.M. Angew. Chem. Int. Ed., 1984, 23(6), 420-429.
(b) Richelson, E.; Souder, T. Life Sci., 2000, 68(1), 29-39.
[5]
(a) Zhang, Y.K.; Plattner, J.J.; Easom, E.E.; Zhou, Y.; Akama, T.; Bu, W.; White, W.H.; Defauw, J.M.; Winkle, J.R.; Balko, T.W.; Guo, S.; Xue, J.; Cao, J.; Zou, W. Bioorg. Med. Chem. Lett., 2015, 25(23), 5589-5593.
(b) Kaur, K.; Kumar, V.; Sharma, A.K.; Gupta, G.K. Eur. J. Med. Chem., 2014, 77, 121-133.
[6]
Shoop, W.L.; Hartline, E.J.; Gould, B.R.; Waddell, M.E.; McDowell, R.G.; Kinney, J.B.; Lahm, G.P.; Long, J.K.; Xu, M.; Wagerle, T.; Jones, G.S.; Dietrich, R.F.; Cordova, D.; Schroeder, M.E.; Rhoades, D.F.; Benner, E.A.; Confalone, P.N. Vet. Parasitol., 2014, 201(3-4), 179-189.
[7]
Trost, B.M.; King, S.A. J. Am. Chem. Soc., 1990, 112(1), 408-422.
[8]
(a) Hohenberg, P.; Kohn, W. Phys. Rev., 1964, 136(3B), B864-B871.
(b) Kohn, W.; Sham, L.J. Phys. Rev., 1965, 140(4A), A1133-A1138.
[9]
(a) Becke, A.D. J. Chem. Phys., 1992, 96(3), 2155-2160.
(b) Becke, A.D. Phys. Rev. A, 1988, 38(6), 3098-3100.
(c) Lee, C.; Yang, W.; Parr, R.G. Phys. Rev. B, 1988, 37(2), 785-789.
(d) Becke, A.D. J. Chem. Phys., 1993, 98(7), 5648-5652.
[10]
Eryılmaz, S.; Gül, M.; İnkaya, E.; İdil, Ö.; Özdemir, N. J. Mol. Struct., 2016, 1122, 219-233.
[11]
Koopmans, T. Physica, 1933, 1(1), 104-113.
[12]
Gázquez, J.L. Chemical Reactivity Concepts in Density Functional Theory In: Chemical Reactivity Theory. A Density Functional View. Chattaraj,; P. K. Ed.; CRC Press, Taylor & Francis Group: New York, USA,, 2009; Vol 2, pp. 9-10.
[13]
Parr, R.G.; Pearson, R.G. J. Am. Chem. Soc., 1983, 105(26), 7512-7516.
[14]
Mulliken, R.S. J. Chem. Phys., 1934, 2(11), 782-793.
[15]
(a) Pearson, R.G. J. Chem. Educ., 1968, 45(9), 581-586.
(b) Pearson, R.G. J. Chem. Educ., 1968, 45(10), 643-648.
(c) Pearson, R.G. J. Chem. Educ., 1999, 76(2), 267-270.
(d) Pearson, R.G. J. Am. Chem. Soc., 1963, 85(22), 3533-3539.
[16]
Pearson, R.G. Proc. Nat. Acad. Sci., 1986, 83(22), 8440-8441.
[17]
Parr, R.G.; Pearson, R.G. J. Am. Chem. Soc., 1983, 105(26), 7512-7516. Reed, J. L. J. Phys. Chem. A, 1997, 101(40), 7396-7400.
[18]
Pearson, R.G. Proc. Natl. Acad. Sci. USA, 1986, 83(22), 8440-8441.
[19]
(a) Parr, R.G.; Szentpaly, L.V.; Liu, S. J. Am. Chem. Soc., 1999, 121(9), 1922-1924.
(b) Chattaraj, P.K.; Roy, D.R. Chem. Rev., 2007, 107(9), PR46-PR74.
[20]
Parr, R.G.; Yang, W. J. Am. Chem. Soc., 1984, 106(14), 4049-4050.
[21]
Yang, W.; Parr, R.G.; Pucci, R. J. Chem. Phys., 1984, 81(6), 2862-2863.
[22]
Fukui, K. Pure Appl. Chem., 1982, 54(10), 1825-1836.
[23]
Ayers, P.W.; Levy, M. Theor. Chem. Acc., 2000, 103(3-4), 353-360.
[24]
Ayers, P.W.; Yang, W.; Bartolotti, L.J. Fukui Function In: Chemical Reactivity Theory. A Density Functional View; P. K. Chattaraj, Ed.; CRC Press, Taylor & Francis Group: New York. USA,, 2009; 18, pp. 255-265.
[25]
Yang, W.; Mortier, W.J. J. Am. Chem. Soc., 1986, 108(19), 5708-5711.
[26]
Chattaraj, P.K.; Maiti, B.; Sarkar, U. J. Phys. Chem. A, 2003, 107(25), 4973-4975.
[27]
Roy, D.R.; Parthasarathi, R.; Padmanabhan, J.; Sarkar, U.; Subramanian, V.; Chattaraj, P.K. J. Phys. Chem. A, 2006, 110(3), 1084-1093.
[28]
Pérez, P.; Toro-Labbé, A.; Aizman, A.; Contreras, R. J. Org. Chem., 2002, 67(14), 4747-4752.
[29]
Chamorro, E.; Chattaraj, P.K.; Fuentealba, P. J. Phys. Chem. A, 2003, 107(36), 7068-7072.
[30]
Yang, W.; Parr, R.G. Proc. Nat. Acad. Sci., 1985, 82(20), 6723-6726.
[31]
(a) Sánchez-Márquez, J.; Zorrilla, D.; Sánchez-Coronilla, A.; Desireé, M.; Navas, J.; Fernández-Lorenzo, C.; Alcantara, R.; Martín-Calleja, J. J. Mol. Model., 2014, 20(11), 2492.
[32]
Pluta, T.; Zerzucha, P. J. Comput. Methods Sci. Eng., 2004, 4(3), 345-355.
[33]
Nataraj, A.; Balachandran, V.; Karthick, T. J. Mol. Struct., 2013, 1031, 221-233.
[34]
Ramalingam, S.; Karabacak, M.; Periandy, S.; Puviarasan, N.; Tanuja, D. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2012, 96, 207-220.
[35]
(a) Gul, M.; Tutar, A. J. Heterocycl. Chem., 2014, 51(2), 327-335.
(b) Eryılmaz, S.; Gül, M.; İnkaya, E.; Taş, M. J. Mol. Struct., 2016, 1108, 209-222.
[36]
Deng, S.; Gangadharmath, U.; Chang, C.W.T. J. Org. Chem., 2006, 71(14), 5179-5185.
[37]
Pérez, P.; Domingo, L.R.; Aurell, M.J.; Contreras, R. Tetrahedron, 2003, 59(17), 3117-3125.
[38]
(a) Houk, K.N.; Sims, J.; Duke, R.E.; Strozier, R.W.; George, J.K. J. Am. Chem. Soc., 1973, 95(22), 7287-7301.
(b)Feuer, H., Ed.; Nitrile Oxides, Nitrones and Nitronates in Organic Synthesis: Novel Strategies in Synthesis, 1st ed; John Wiley & Sons: New York, 2003.
[39]
Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H.P.; Izmaylov, A.F.; Bloino, J.; Zheng, G.; Sonnenberg, J.L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J.A.; Peralta, J.E.; Ogliaro, F.; Bearpark, M.; Heyd, J.J.; Brothers, E.; Kudin, K.N.; Staroverov, V.N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J.C.; Iyengar, S.S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J.M.; Klene, M.; Knox, J.E.; Cross, J.B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R.E.; Yazyev, O.; Austin, A.J.; Cammi, R.; Pomelli, C.; Ochterski, J.W.; Martin, R.L.; Morokuma, K.; Zakrzewski, V.G.; Voth, G.A.; Salvador, P.; Dannenberg, J.J.; Dapprich, S.; Daniels, A.D.; Farkas, Ö.; Foresman, J.B.; Ortiz, J.V.; Cioslowski, J.; Fox, D.J. Gaussian, Inc., Wallingford CT , 2009.
[40]
GaussView. Version 5. Dennington, R.; Keith, T.; Millam, J. Semichem Inc. Shawnee Mission. KS. . (2009).
[41]
(a) Kamal, A.; Bharathi, E.V.; Reddy, J.S.; Ramaiah, M.J.; Dastagiri, D.; Reddy, M.K.; Viswanath, A.; Reddy, T.L.; Shaik, T.B.; Pushpavalli, S.N.C.V.L.; Bhadra, M.P. Eur. J. Med. Chem., 2011, 46(2), 691-703.
(b) Ribeiro, C.J.; Kumar, S.P.; Moreira, R.; Santos, M.M. Tetrahedron Lett., 2012, 53(3), 281-284.
(c) Kok, S.H.L.; Gambari, R.; Chui, C.H.; Yuen, M.C.W.; Lin, E.; Wong, R.S.M.; Lau, F.Y.; Cheng, G.Y.M.; Lam, W.S.; Chan, S.H.; Lam, K.H.; Cheng, C.H.; Lai, P.B.S.; Yu, M.W.Y.; Cheung, F.; Tang, J.C.O.; Chan, A.S.C. Bioorg. Med. Chem., 2008, 16(7), 3626-3631.
[42]
(a) Shah, T.; Desai, V. J. Serbian. Chem. Soc., 2007, 72(5), 443-449.
(b) Bhimwal, R.; Sharma, A.K.; Jain, A. J. Adv. Pharm. Educ. Res., 2011, 1(5), 251-258.
[43]
McHutchison, J.G.; Manns, M.P.; Muir, A.J.; Terrault, N.A.; Jacobson, I.M.; Afdhal, N.H.; Heathcate, E.J.; Zeuzem, S.; Reesink, H.W.; Garg, J.; Bsharat, M.; George, S.; Kauffman, R.S.; Adda, N.; Di Bisceglie, A.M. New. Engl. J. Med., 2010, 362(14), 1292-1303.
[44]
Ruberto, G.; Baratta, M.T. Food Chem., 2000, 69(2), 167-174.
[45]
Kamal‐Eldin, A.; Appelqvist, L.Å. Lipids, 1996, 31(7), 671-701.
[46]
Aazza, S.; Lyoussi, B.; Miguel, M.G. Molecules, 2011, 16(9), 7672-7690.
[47]
Laguerre, M.; Lecomte, J.; Villeneuve, P. Prog. Lipid Res., 2007, 46(5), 244-282.
[48]
(a) Gülçin, İ. Innovative. Food Sci. Emerg. Technol., 2010, 11(1), 210-218.
(b) Mathew, S.; Abraham, T.E. Food and Chem. Toxicol., 2006, 44(2), 198-206.
[49]
Carocho, M.; Ferreira, I.C. Food Chem. Toxicol., 2013, 51, 15-25.
[50]
Brand-Williams, W.; Cuvelier, M.E.; Berset, C.L.W.T. LWT-Food Sci. Technol., 1995, 28(1), 25-30.
[51]
Benzie, I.F. J.J. Strain Anal. Biochem., 1996, 239(1), 70-76.
[52]
Dinis, T.C.; Madeira, V.M.; Almeida, L.M. Arch. Biochem. Biophys., 1994, 315(1), 161-169.