[1]
O’Neill, J. Rapid Diagnostics: Stopping Unnecessary Use of Antibiotics. Review on Antimicrobial Resistance; Welcome Trust and HM Government, 2015.
[2]
Smith, R.; Coast, J. The true cost of antimicrobial resistance. BMJ, 2013, 346, f1493.
[3]
Aarestrup, F. Sustainable farming: get pigs off antibiotics. Nature, 2012, 486, 465-466.
[4]
Lazcka, O.; Del Campo, F.J. Mun˜ oz, F.X. Pathogen detection: a perspective of traditional methods and biosensors. Biosens. Bioelectron., 2007, 22, 1205-1217.
[5]
Aroonnual, A.; Janvilisri, T.; Ounjai, P.; Chankhamhaengdecha, S. Microfluidics: innovative approaches for rapid diagnosis of antibiotic-resistant bacteria. Essays Biochem., 2017, 61, 91-101.
[6]
Pulido, M.R.; García-Quintanilla, M.; Martín-Peña, R.; Cisneros, J.M.; McConnell, M.J. Progress on the development of rapid methods for antimicrobial susceptibility testing. J. Antimicrob. Chemother., 2013, 68, 2710-2717.
[7]
Schofield, C.B. Updating antimicrobial susceptibility testing methods. Clin. Lab. Sci., 2012, 25, 233-239.
[8]
Didelot, X.; Bowden, R.; Wilson, D.J.; Peto, T.E.A.; Crook, D.W. Transforming clinical microbiology with bacterial genome sequencing. Nat. Rev. Genet., 2012, 13, 601-612.
[9]
Hrabak, J.; Chudackova, E.; Walkova, R. Matrix-assisted laser desorption ionization- time of flight (MALDITOF) mass spectrometry for detection of antibiotic resistance mechanisms: from research to routine diagnosis. Clin. Microbiol. Rev., 2013, 26, 103-114.
[10]
Kinnunen, P.; McNaughton, B.H.; Albertson, T.; Sinn, I.; Mofakham, S.; Elbez, R.; Newton, D.W.; Hunt, A.; Kopelman, R. Self-assembled magnetic bead biosensor for measuring bacterial growth and antimicrobial susceptibility testing. Small, 2012, 8, 2477-2482.
[11]
Whitesides, G.M. The origins and the future of microfluidics. Nature, 2006, 442, 368-373.
[12]
Chiang, Y.L.; Lin, C.H.; Yen, M.Y.; Su, Y.D.; Chen, S.J.; Chen, H.F. Innovative antimicrobial susceptibility testing method using surface plasmon resonance. Biosens. Bioelectron., 2009, 24, 1905-1910.
[13]
Karasinski, J.; White, L.; Zhang, Y.; Wang, E.; Andreescu, S.; Sadik, O.A.; Lavine, B.K.; Vora, M. Detection and identification of bacteria using antibiotic susceptibility and a multi-array electrochemical sensor with pattern recognition. Biosens. Bioelectron., 2007, 22, 2643-2649.
[14]
Tang, Y.; Zhen, L.; Liu, J.; Wu, J. Rapid antibiotic susceptibility testing in a microfluidic pH sensor. Anal. Chem., 2013, 85, 2787-2794.
[15]
Lu, X.; Samuelson, D.R.; Xu, Y.; Zhang, H.; Wang, S.; Rasco, B.A.; Xu, J.; Konke, M.E. Detecting and tracking nosocomial methicillin-resistant Staphylococcus aureus using a microfluidic SERS biosensor. Anal. Chem., 2013, 85, 2320-2327.
[16]
Bauer, K.A.; Perez, K.K.; Forrest, G.N.; Goff, D.A. Review of rapid diagnostic tests used by antimicrobial stewardship programs. Clin. Infect. Dis., 2014, 59, S134-S145.
[17]
Kerremans, J.J.; Verboom, P.; Stijnen, T.; Hakkaart-van, R.L.; Goessens, W.; Verbrugh, H.A.; Vos, M.C. Rapid identification and antimicrobial susceptibility testing reduce antibiotic use and accelerate pathogen-directed antibiotic use. J. Antimicrob. Chemother., 2008, 61, 428-435.
[18]
Choi, J.; Yoo, J.; Lee, M.; Kim, E.G.; Lee, J.S.; Lee, S.; Joo, S.; Song, S.H.; Kim, E.C.; Lee, J.C.; Kim, H.C.; Jung, Y.G.; Kwon, S. A rapid antimicrobial susceptibility test based on single-cell morphological analysis. Sci. Transl. Med., 2014, 6267ra174
[19]
Choi, J.; Yoo, J.; Kim, K.J.; Kim, E.G.; Park, K.O.; Kim, H.; Kim, H.; Jung, H.; Kim, T.; Choi, M.; Kim, H.C.; Ryoo, S.; Jung, Y.G.; Kwon, S. Rapid drug susceptibility test of Mycobacterium tuberculosis using microscopic time-lapse imaging in an agarose matrix. Appl. Microbiol. Biotechnol., 2016, 100, 2355.
[20]
Mohan, R.; Mukherjee, A.; Sevgen, S.E.; Sanpitakseree, C.; Lee, J. Schroeder, Paul, C. M.; Kenis, J. A. A multiplexed microfluidic platform for rapid antibiotic susceptibility testing. Biosens. Bioelectron., 2013, 49, 118-125.
[21]
Mohan, R.; Sanpitakseree, C.; Desai, A.V.; Sevgen, S.E.; Schroedera, C.M.; Paul, J.A. Kenis. A microfluidic approach to study the effect of bacterial interactions on antimicrobial susceptibility in polymicrobial cultures. RSC Advances, 2015, 5, 35211-35223.
[22]
Sun, H.; Liu, Z.; Hua, C.; Ren, K. Cell-on-hydrogel platform made of agar and alginate for rapid, low-cost, multidimensional test of antimicrobial susceptibility. Lab Chip, 2016, 16, 3130-3138.
[23]
Liu, Z. Sun, Han.; Ren, Dr. K. A Multiplexed, Gradient‐Based, Full‐Hydrogel Microfluidic Platform for Rapid, High‐Throughput Antimicrobial Susceptibility Testing. ChemPlusChem, 2017, 82, 792.
[24]
Lee, W.B.; Fu, C.Y.; Chang, W.H.; You, H.L.; Wang, C.H.; Lee, M.S.; Lee, G.B. A microfluidic device for antimicrobial susceptibility testing based on a broth dilution method. Biosens. Bioelectron., 2017, 87, 669-678.
[25]
Kim, S.C.; Cestellos-Blanco, S.; Inoue, K.; Zare, R.N. Miniaturized Antimicrobial Susceptibility Test by Combining Concentration Gradient Generation and Rapid Cell Culturing. Antibiotics (Basel), 2015, 4, 455-466.
[26]
Matsumoto, Y.; Sakakihara, S.; Grushnikov, A.; Kikuchi, K.; Noji, H.; Yamaguchi, A.; Iino, R.; Yagi, Y.; Nishino, K. A microfluidic channel method for rapid drug susceptibility testing of pseudomonas aeruginosa. PLoS One, 2016, 11e0148797
[27]
Syal, K.; Shen, S.; Yang, Y.; Wang, S.; Haydel, S.E.; Tao, N. Rapid antibiotic susceptibility testing of uropathogenic E. coli by tracking submicron scale motion of single bacterial cells. ACS Sens., 2017, 2, 1231-1239.
[28]
Baltekin, O.; Boucharin, A.; Tano, E.; Andersson, D.I.; Elf, J. Antibiotic susceptibility testing in less than 30 min using direct single-cell imaging. Proc. Natl. Acad. Sci. USA, 2017, 34, 9170-9175.
[29]
Hassan, S.; Nightingale, A.M.; Niu, X. Continuous measurement of enzymatic kinetics in droplet flow for point-of-care monitoring. Analyst (Lond.), 2016, 141, 3266-3273.
[30]
Theberge, A.B.; Courtois, F.; Schaerli, Y.; Fischlechner, M.; Abell, C.; Hollfelder, F.; Huck, W.T.S. Microdroplets in microfluidics: An evolving platform for discoveries in chemistry and biology. Angew. Chem. Int. Ed., 2010, 49, 5846-5868.
[31]
Schaerli, Y.; Hollfelder, F. The potential of microfluidic water-in-oil droplets in experimental biology. Mol. Biosyst., 2009, 5, 1392-1404.
[33]
Kaushika, A.M. Hsieha, k.; Chena, L.; Shina, D. J.; Liaob, j. C.; Wang, T. Accelerating bacterial growth detection and antimicrobial susceptibility assessment in integrated picoliter droplet platform. Biosens. Bioelectron., 2017, 97, 260-266.
[34]
Keays, M.C.; O’Brien, M.; Hussain, A.; Kiely, P.A.; Dalton, T. Rapid identification of antibiotic resistance using droplet microfluidics. Bioengineered, 2016, 7, 79-87.
[35]
Churski, K.; Kaminski, T.S.; Jakiela, S.; Kamysz, W.; Baranska-Rybak, W.; Weibeld, D.B.; Garstecki, P. Rapid screening of antibiotic toxicity in an automated microdroplet system. Lab Chip, 2012, 12, 1629.
[36]
Boedicker, J.Q.; Li, L.; Kline, T.R.; Ismagilov, R.F. Detecting bacteria and determining their susceptibility to antibiotics by stochastic confinement in nanoliter droplets using plug-based microfluidics. Lab Chip, 2008, 8, 1265-1272.
[37]
Mettakoonpitak, J.; Boehle, K.; Nantaphol, S.; Teengam, P.; Adkins, J.A.; Srisa-Art, M.; Henry, C.S. Electrochemistry on paper‐based analytical devices: A review. Electroanalysis, 2016, 28, 1420-1436.
[38]
Yang, Y.Y.; Noviana, E.; Nguyen, M.P.; Geiss, B.J.; Dandy, D.S.; Henry, C.S. Paper-Based Microfluidic Devices: Emerging Themes and Applications. Anal. Chem., 2017, 89, 71-91.
[39]
Choi, J.R.; Tang, R.; Wang, S.; Wan Abas, W.A. PingguanMurphy, B.; Xu, F. Paper-based sample-to-answer molecular diagnostic platform for point-of-care diagnostics. Biosens. Bioelectron., 2015, 74, 427-439.
[40]
Funes-Huacca, M.; Wu, A.; Szepesvari, E.; Rajendran, P. KwanWong, N.; Razgulin, A.; Shen, Y.; Kagira, J.; Campbell, R.; Derda, R., Portable self-contained cultures for phage and bacteria made of paper and tape. Lab Chip, 2012, 12, 4269-4278.
[41]
Li, C-z.; Vandenberg, K.; Prabhulkar, S.; Zhu, X.; Schneper, L.; Methee, K.; Rosser, C.J.; Almeide, E. Paper based point-of-care testing disc for multiplex whole cell bacteria analysis. Biosens. Bioelectron., 2011, 26, 4342-4348.
[42]
Adkins, J.A.; Boehle, K.; Friend, C.; Chamberlain, B.; Bisha, B.; Henry, C.S. Colorimetric and electrochemical bacteria detection using printed paper- and transparency-based analytic devices. Anal. Chem., 2017, 89, 3613-3621.
[43]
Park, T.S.; Li, W.; McCracken, K.E.; Yoon, J-Y. Smartphone quantifies Salmonella from paper microfluidics. Lab Chip, 2013, 13, 4832-4840.
[44]
Jokerst, J.C.; Adkins, J.A.; Bisha, B.; Mentele, M.M.; Goodridge, L.D.; Henry, C.S. Development of a Paper-Based Analytical Device for Colorimetric Detection of Select Foodborne Pathogens. Anal. Chem., 2012, 84, 2900-2907.
[45]
Srisa-Art, M.; Boehle, K.E.; Geiss, B.J.; Henry, C.S. Highly sensitive detection of salmonella typhimurium using a colorimetric paper-based analytical device coupled with immunomagnetic separation. Anal. Chem., 2018, 90, 1035-1043.
[46]
Boehle, K.E.; Gilliand, J.; Wheeldon, C.R.; Holder, A.; Adkins, J.A.; Geiss, B.J.; Ryan, E.P.; Henry, C.S. Utilizing Paper-Based Devices for Antimicrobial-Resistant Bacteria Detection. Angew. Chem. Int. Ed., 2017, 56, 6886-6890.
[47]
Xu, B.; Du, Y.; Lin, J.; Qi, M.; Shu, B.; Wen, X.; Liang, G.; Chen, B.; Liu, D. Simultaneous identification and antimicrobial susceptibility testing of multiple uropathogens on a microfluidic chip with paper-supported cell culture arrays. Anal. Chem., 2016, 88, 11593-11600.
[48]
Reis, N.M.; Pivetal, J.; Loo-Zazueta, A.L.; Barrosb, J.M.S.; Edwards, A.D. Lab on a stick: Multi-analyte cellular assays in a microfluidic dipstick. Lab Chip, 2016, 16, 2891.
[49]
Gervais, L.; Delamarche, E. Toward one-step point-of-care immunodiagnostics using capillary-driven microfluidics and PDMS substrates. Lab Chip, 2009, 9, 3330-3337.
[50]
Walker, G.M.; Beebe, D.J. A passive pumping method for microfluidic devices. Lab Chip, 2002, 2, 131-134.
[51]
Desai, D.; Wu, G.; Zaman, M.H. Tackling HIV through robust diagnostics in the developing world: current status and future opportunities. Lab Chip, 2011, 11, 194-211.
[52]
Tseng, D.; Mudanyali, O.; Oztoprak, C.; Isikman, S.O.; Sencan, I.; Yaglidere, O.; Ozcan, A. Lensfree microscopy on a cellphone. Lab Chip, 2010, 10, 1787-1792.
[53]
Barbosa, A.I.; Gehlot, P.; Sidapra, K.; Edwards, A.D.; Reis, N.M. Portable smartphone quantitation of prostate specific antigen (PSA) in a fluoropolymer microfluidic device. Biosens. Bioelectron., 2015, 70, 5-14.
[54]
Feng, S.; Tseng, D.; Carlo, D.D.; Garner, O.B.; Ozcan, A. High-throughput and automated diagnosis of antimicrobial resistance using a cost-effective cellphone-based micro-plate reader. Sci. Rep., 2016, 6, 39203.
[55]
Kadlec, M.W.; You, D.; Liao, J.C.; Wong, P.K. A cell phone-based microphotometric system for rapid antimicrobial susceptibility testing. J. Lab. Autom., 2014, 19, 258-266.
[56]
Altintas, Z.; Akgun, M.; Kokturk, G.; Uludag, Y. A fully automated microfluidic-based electrochemical sensor for real-time bacteria detection. Biosens. Bioelectron., 2018, 100, 541-548.
[57]
Liu, Z.; Banaei, N.; Ren, K. Microfluidics for combating antimicrobial resistance. Trends Biotechnol., 2017, 35(12), 1129-1139.