[1]
Chin, W.; Jacoby, L.; Simon, O.; Talati, N.; Wegrzyn, G.; Jacoby, R.; Proano, J.; Sprau, S.E.; Markovitz, G.; Hsu, R.; Joo, E. Hyperbaric programs in the United States: Locations and capabilities of treating decompression sickness, arterial gas embolisms, and acute carbon monoxide poisoning: Survey results. Undersea Hyperb. Med., 2016, 43, 29-43.
[2]
Tibbles, P.M.; Edelsberg, J.S. Hyperbaric-oxygen therapy. N. Engl. J. Med., 1996, 334, 1642-1648.
[3]
Chen, C.; Huang, L.; Nong, Z.; Li, Y.; Chen, W.; Huang, J.; Pan, X.; Wu, G.; Lin, Y. Hyperbaric oxygen prevents cognitive impairments in mice induced by D-Galactose by improving cholinergic and anti-apoptotic functions. Neurochem. Res., 2017, 42, 1240-1253.
[4]
Sharma, A.K.; Zhou, G.P.; Kupferman, J.; Surks, H.K.; Christensen, E.N.; Chou, J.J.; Mendelsohn, M.E.; Rigby, A.C. Probing the interaction between the coiled coil leucine zipper of cGMP-dependent protein kinase Ialpha and the C terminus of the myosin binding subunit of the myosin light chain phosphatase. J. Biol. Chem., 2008, 283, 32860-32869.
[5]
Schnell, J.R.; Chou, J.J. Structure and mechanism of the M2 proton channel of influenza A virus. Nature, 2008, 451, 591-595.
[6]
Schnell, J.R.; Zhou, G.P.; Zweckstetter, M.; Rigby, A.C.; Chou, J.J. Rapid and accurate structure determination of coiled-coil domains using NMR dipolar couplings: Application to cGMP-dependent protein kinase Ialpha. Protein Sci., 2005, 14, 2421-2428.
[7]
Dev, J.; Park, D.; Fu, Q.; Chen, J.; Ha, H.J.; Ghantous, F.; Herrmann, T.; Chang, W.; Liu, Z.; Frey, G.; Seaman, M.S.; Chen, B.; Chou, J.J. Structural basis for membrane anchoring of HIV-1 envelope spike. Science, 2016, 353, 172-175.
[8]
Berardi, M.J.; Shih, W.M.; Harrison, S.C.; Chou, J.J. Mitochondrial uncoupling protein 2 structure determined by NMR molecular fragment searching. Nature, 2011, 476, 109-113.
[9]
OuYang, B.; Xie, S.; Berardi, M.J.; Zhao, X.M.; Dev, J.; Yu, W.; Sun, B.; Chou, J.J. Unusual architecture of the p7 channel from hepatitis C virus. Nature, 2013, 498, 521-525.
[10]
Oxenoid, K.; Dong, Y.S.; Cao, C.; Cui, T.; Sancak, Y.; Markhard, A.L.; Grabarek, Z.; Kong, L.; Liu, Z.; Ouyang, B.; Cong, Y.; Mootha, V.K.; Chou, J.J. Architecture of the Mitochondrial calcium uniporter. Nature, 2016, 533, 269-273.
[11]
Troy, F.A. 2-D NMR analyses reveals a specific interaction between polyisoprenols (PIs) and the polyisoprenol recognition sequences (PIRS) in model membranes. Glycoconj. J., 1995, 12, 434.
[12]
Zhou, G.P.; Troy, F.A. Characterization by NMR and molecular modeling of the binding of polyisoprenols (PI) and polyisoprenyl recognition sequence (PIRS) peptides: Three-dimensional structure of the complexes reveals sites of specific interactions. Glycobiology, 2003, 13, 51-71.
[13]
Zhou, G.P.; Troy, F.A., II NMR studies on how the binding complex of polyisoprenol recognition sequence peptides and polyisoprenols can modulate membrane structure. Curr. Protein Pept. Sci., 2005, 6, 399-411.
[14]
Zhou, G.P.; Troy, F.A. NMR study of the preferred membrane orientation of polyisoprenols (dolichol) and the impact of their complex with polyisoprenyl recognition sequence peptides on membrane structure. Glycobiology, 2005, 15, 347-359.
[15]
Chou, K.C.; Jones, D.; Heinrikson, R.L. Prediction of the tertiary structure and substrate binding site of caspase-8. FEBS Lett., 1997, 419, 49-54.
[16]
Chou, K.C.; Wei, D.Q.; Zhong, W.Z. Binding mechanism of coronavirus main proteinase with ligands and its implication to drug design against SARS. Biochem. Biophys. Res. Commun., 2003, 308, 148-151.
[17]
Chou, K.C.; Tomasselli, A.G.; Heinrikson, R.L. Prediction of the tertiary structure of a Caspase-9/inhibitor complex. FEBS Lett., 2000, 470, 249-256.
[18]
Liao, Q.H.; Gao, Q.Z.; Wei, J. Docking and molecular dynamics study on the inhibitory activity of novel inhibitors on Epidermal Growth Factor Receptor (EGFR). Med. Chem., 2011, 7, 24-31.
[19]
Li, X.B.; Wang, S.Q.; Xu, W.R.; Wang, R.L. Novel inhibitor design for Hemagglutinin against H1N1 Influenza virus by core hopping method. PLoS One, 2011, 6e28111
[20]
Ma, Y.; Wang, S.Q.; Xu, W.R.; Wang, R.L. Design novel dual agonists for treating type-2 diabetes by targeting peroxisome proliferator-activated receptors with core hopping approach. PLoS One, 2012, 7e38546
[21]
Wang, J.F.; Chou, K.C. Insights from modeling the 3D structure of New Delhi metallo-beta-lactamase and its binding interactions with antibiotic drugs. PLoS One, 2011, 6e18414
[22]
Wang, J.F.; Chou, K.C. Insights into the mutation-induced HHH syndrome from modeling human Mitochondrial Ornithine Transporter-1. PLoS One, 2012, 7e31048
[23]
Chou, K.C. Insights from modelling three-dimensional structures of the human potassium and sodium channels. J. Proteome Res., 2004, 3, 856-861.
[24]
Chou, K.C. Insights from modelling the 3D structure of the extracellular domain of alpha7 nicotinic acetylcholine receptor. Biochem. Biophys. Res. Commun., 2004, 319, 433-438.
[25]
Chou, K.C. Coupling interaction between thromboxane A2 receptor and alpha-13 subunit of guanine nucleotide-binding protein. J. Proteome Res., 2005, 4, 1681-1686.
[26]
Chou, K.C. Insights from modelling the tertiary structure of BACE2. J. Proteome Res., 2004, 3, 1069-1072.
[27]
Chou, K.C. Insights from modeling the 3D structure of DNA-CBF3b complex. J. Proteome Res., 2005, 4, 1657-1660.
[28]
Wang, J.F.; Wei, D.Q.; Lin, Y.; Wang, Y.H.; Du, H.L.; Li, Y.X. Insights from modeling the 3D structure of NAD(P)H-dependent D-xylose reductase of Pichia stipitis and its binding interactions with NAD and NADP. Biochem. Biophys. Res. Commun., 2007, 359, 323-329.
[29]
Zhou, G.P.; Doctor, K. Subcellular location prediction of apoptosis proteins. Proteins, 2003, 50, 44-48.
[30]
Wang, J.F.; Chou, K.C. Insights from studying the mutation-induced allostery in the M2 proton channel by molecular dynamics. Protein Eng. Des. Sel., 2010, 23, 663-666.
[31]
Chou, K.C.; Elrod, D.W. Bioinformatical analysis of G-protein-coupled receptors. J. Proteome Res., 2002, 1, 429-433.
[32]
Chou, K.C. Review: Structural bioinformatics and its impact to biomedical science. Curr. Med. Chem., 2004, 11, 2105-2134.
[33]
Fan, Y.N.; Xiao, X.; Min, J.L.; Chou, K.C. iNR-Drug: Predicting the interaction of drugs with nuclear receptors in cellular networking. Int. J. Mol. Sci., 2014, 15, 4915-4937.
[34]
Min, J.L.; Xiao, X.; Chou, K.C. iEzy-Drug: A web server for identifying the interaction between enzymes and drugs in cellular networking. BioMed Res. Int., 2013, 2013701317
[35]
Xiao, X.; Min, J.L.; Wang, P.; Chou, K.C. iGPCR-Drug: A web server for predicting interaction between GPCRs and drugs in cellular networking. PLoS One, 2013, 8e72234
[36]
Xiao, X.; Min, J.L.; Wang, P.; Chou, K.C. iCDI-PseFpt: Identify the channel-drug interaction in cellular networking with PseAAC and molecular fingerprints. J. Theor. Biol., 2013, 337C, 71-79.
[37]
Xiao, X.; Min, J.L.; Lin, W.Z.; Liu, Z.; Cheng, X.; Chou, K.C. iDrug-Target: Predicting the interactions between drug compounds and target proteins in cellular networking via the benchmark dataset optimization approach. J. Biomol. Struct. Dyn., 2015, 33, 2221-2233.
[38]
Zhou, G.P.; Chen, D.; Liao, S.; Huang, R.B. Recent progresses in studying Helix-Helix interactions in proteins by incorporating the Wenxiang diagram into the NMR spectroscopy. Curr. Top. Med. Chem., 2016, 16, 581-590.
[39]
Zhou, G.P. Editorial: Current progress in structural bioinformatics of protein-biomolecule interactions. Med. Chem., 2015, 11, 216-217.
[40]
Zhou, G.P.; Huang, R.B.; Troy, F.A. 3D structural conformation and functional domains of polysialyltransferase ST8Sia IV required for polysialylation of neural cell adhesion molecules. Protein Pept. Lett., 2015, 22, 137-148.
[41]
Zhou, G.P. Missin of randomness. Virulence, 2013, 4, 669-670.
[42]
Zhou, G.P.; Huang, R.B. The pH-triggered conversion of the PrPc to PrPsc. Curr. Top. Med. Chem., 2013, 13, 1152-1163.
[43]
Zhou, G.P. The disposition of the LZCC protein residues in Wenxiang diagram provides new insights into the protein-protein interaction mechanism. J. Theor. Biol., 2011, 284, 142-148.
[44]
Zhou, G.P. The structural determinations of the Leucine Zipper coiled-coil domains of the cGMP-dependent protein Kinase I and its interaction with the Myosin binding subunit of the Myosin light chains phosphase. Protein Pept. Lett., 2011, 18, 966-978.
[45]
Huang, R.B.; Cheng, D.; Lu, B.; Liao, S.M.; Troy, F.A.; Zhou, G.P. the intrinsic relationship between structure and function of the sialyltransferase ST8Sia family members. Curr. Top. Med. Chem., 2017, 17, 2359-2369.
[46]
Zhou, G.P. Predictions and determinations of protein and peptide structures. Protein Pept. Lett., 2011, 18, 964-965.
[47]
Chou, K.C. Pseudo amino acid composition and its applications in bioinformatics, proteomics and system biology. Curr. Proteomics, 2009, 6, 262-274.
[48]
Chen, W.; Ding, H.; Zhou, X.; Lin, H.; Chou, K.C. iRNA(m6A)-PseDNC: Identifying N6-methyladenosine sites using pseudo dinucleotide composition. Anal. Biochem., 2018, 561-562, 59-65.
[49]
Khan, Y.D.; Rasool, N.; Hussain, W.; Khan, S.A. iPhosT-PseAAC: Identify phosphothreonine sites by incorporating sequence statistical moments into PseAAC. Anal. Biochem., 2018, 550, 109-116.
[50]
Qiu, W.R.; Sun, B.Q.; Xiao, X.; Xu, Z.C.; Jia, J.H. iKcr-PseEns: Identify lysine crotonylation sites in histone proteins with pseudo components and ensemble classifier. Genomics, 2018, 110, 239-246.
[51]
Chen, W.; Feng, P.M.; Lin, H.; Chou, K.C. iSS-PseDNC: Identifying splicing sites using pseudo dinucleotide composition. BioMed Res. Int., 2014, 2014623149
[52]
Xie, H.L.; Fu, L.; Nie, X.D. Using ensemble SVM to identify human GPCRs N-linked glycosylation sites based on the general form of Chou’s PseAAC. Protein Eng. Des. Sel., 2013, 26, 735-742.
[53]
Xu, Y.; Ding, J.; Wu, L.Y.; Chou, K.C. iSNO-PseAAC: Predict cysteine S-nitrosylation sites in proteins by incorporating position specific amino acid propensity into pseudo amino acid composition. PLoS One, 2013, 8e55844
[54]
Zhou, G.P. Editorial: Modulations and their biological functions of protein-biomolecule interactions. Curr. Top. Med. Chem., 2016, 16, 579-580.
[55]
Jia, C.; Lin, X.; Wang, Z. Prediction of protein S-Nitrosylation sites based on adapted normal distribution Bi-profile bayes and Chou’s pseudo amino acid composition. Int. J. Mol. Sci., 2014, 15, 10410-10423.
[56]
Qiu, W.R.; Xiao, X.; Lin, W.Z.; Chou, K.C. iMethyl-PseAAC: Identification of protein methylation sites via a pseudo amino acid composition approach. BioMed Res. Int., 2014, 2014947416
[57]
Xu, Y.; Wen, X.; Shao, X.J.; Deng, N.Y.; Chou, K.C. iHyd-PseAAC: Predicting hydroxyproline and hydroxylysine in proteins by incorporating dipeptide position-specific propensity into pseudo amino acid composition. Int. J. Mol. Sci., 2014, 15, 7594-7610.
[58]
Xu, Y.; Wen, X.; Wen, L.S.; Wu, L.Y.; Deng, N.Y.; Chou, K.C. iNitro-Tyr: Prediction of nitrotyrosine sites in proteins with general pseudo amino acid composition. PLoS One, 2014, 9e105018
[59]
Zhang, J.; Zhao, X.; Sun, P.; Ma, Z. PSNO: Predicting Cysteine S-nitrosylation sites by incorporating various sequence-derived features into the general form of Chou’s PseAAC. Int. J. Mol. Sci., 2014, 15, 11204-11219.
[60]
Zhou, G.P.; W.Z., Zhong Perspectives in the medicinal chemistry. Curr. Top. Med. Chem., 2016, 16, 381-382.
[61]
Chou, K.C. Impacts of bioinformatics to medicinal chemistry. Med. Chem., 2015, 11, 218-234.
[62]
Qiu, W.R.; Xiao, X.; Lin, W.Z.; Chou, K.C. iUbiq-Lys: Prediction of lysine ubiquitination sites in proteins by extracting sequence evolution information via a grey system model. J. Biomol. Struct. Dyn., 2015, 33, 1731-1742.
[63]
Chen, W.; Tang, H.; Ye, J.; Lin, H.; Chou, K.C. iRNA-PseU: Identifying RNA pseudouridine sites. Mol. Ther. Nucleic Acids, 2016, 5e332
[64]
Jia, J.; Liu, Z.; Xiao, X.; Liu, B.; Chou, K.C. iSuc-PseOpt: Identifying lysine succinylation sites in proteins by incorporating sequence-coupling effects into pseudo components and optimizing imbalanced training dataset. Anal. Biochem., 2016, 497, 48-56.
[65]
Jia, J.; Liu, Z.; Xiao, X.; Liu, B.; Chou, K.C. pSuc-Lys: Predict lysine succinylation sites in proteins with PseAAC and ensemble random forest approach. J. Theor. Biol., 2016, 394, 223-230.
[66]
Jia, J.; Liu, Z.; Xiao, X.; Liu, B. iCar-PseCp: Identify carbonylation sites in proteins by Monto Carlo sampling and incorporating sequence coupled effects into general PseAAC. Oncotarget, 2016, 7, 34558-34570.
[67]
Jia, J.; Zhang, L.; Liu, Z.; Xiao, X.; Chou, K.C. pSumo-CD: Predicting sumoylation sites in proteins with covariance discriminant algorithm by incorporating sequence-coupled effects into general PseAAC. Bioinformatics, 2016, 32, 3133-3141.
[68]
Liu, Z.; Xiao, X.; Yu, D.J.; Jia, J.; Qiu, W.R. pRNAm-PC: Predicting N-methyladenosine sites in RNA sequences via physical-chemical properties. Anal. Biochem., 2016, 497, 60-67.
[69]
Qiu, W.R.; Sun, B.Q.; Xiao, X.; Xu, Z.C. iHyd-PseCp: Identify hydroxyproline and hydroxylysine in proteins by incorporating sequence-coupled effects into general PseAAC. Oncotarget, 2016, 7, 44310-44321.
[70]
Qiu, W.R.; Sun, B.Q.; Xiao, X.; Xu, Z.C. iPTM-mLys: Identifying multiple lysine PTM sites and their different types. Bioinformatics, 2016, 32, 3116-3123.
[71]
Qiu, W.R.; Xiao, X.; Xu, Z.C.; Chou, K.C. iPhos-PseEn: Identifying phosphorylation sites in proteins by fusing different pseudo components into an ensemble classifier. Oncotarget, 2016, 7, 51270-51283.
[72]
Xu, Y. Recent progress in predicting posttranslational modification sites in proteins. Curr. Top. Med. Chem., 2016, 16, 591-603.
[73]
Feng, P.; Ding, H.; Yang, H.; Chen, W.; Lin, H. iRNA-PseColl: Identifying the occurrence sites of different RNA modifications by incorporating collective effects of nucleotides into PseKNC. Mol. Ther. Nucleic Acids, 2017, 7, 155-163.
[74]
Ju, Z.; He, J.J. Prediction of lysine crotonylation sites by incorporating the composition of k-spaced amino acid pairs into Chou’s general PseAAC. J. Mol. Graph. Model., 2017, 77, 200-204.
[75]
Liu, L.M.; Xu, Y. iPGK-PseAAC: Identify lysine phosphoglycerylation sites in proteins by incorporating four different tiers of amino acid pairwise coupling information into the general PseAAC. Med. Chem., 2017, 13, 552-559.
[76]
Qiu, W.R.; Jiang, S.Y.; Sun, B.Q.; Xiao, X.; Cheng, X. iRNA-2methyl: Identify RNA 2′-O-methylation sites by incorporating sequence-coupled effects into general PseKNC and ensemble classifier. Med. Chem., 2017, 13, 734-743.
[77]
Qiu, W.R.; Jiang, S.Y.; Xu, Z.C.; Xiao, X. iRNAm5C-PseDNC: Identifying RNA 5-methylcytosine sites by incorporating physical-chemical properties into pseudo dinucleotide composition. Oncotarget, 2017, 8, 41178-41188.
[79]
Xu, Y.; Li, C.; Chou, K.C. iPreny-PseAAC: Identify C-terminal cysteine prenylation sites in proteins by incorporating two tiers of sequence couplings into PseAAC. Med. Chem., 2017, 13, 544-551.
[80]
Chen, W.; Feng, P.; Yang, H.; Ding, H.; Lin, H. iRNA-3typeA: Identifying 3-types of modification at RNA’s adenosine sites. Mol. Ther. Nucleic Acids, 2018, 11, 468-474.
[82]
Ju, Z.; Wang, S.Y. Prediction of citrullination sites by incorporating k-spaced amino acid pairs into Chou’s general pseudo amino acid composition. Gene, 2018, 664, 78-83.
[83]
Sabooh, M.F.; Iqbal, N.; Khan, M.; Khan, M.; Maqbool, H.F. Identifying 5-methylcytosine sites in RNA sequence using composite encoding feature into Chou’s PseKNC. J. Theor. Biol., 2018, 452, 1-9.
[84]
Chou, K.C. An unprecedented revolution in medicinal chemistry driven by the progress of biological science. Curr. Top. Med. Chem., 2017, 17, 2337-2358.
[85]
Shi, J.Y.; Zhang, S.W.; Zhou, G.P. Using pseudo amino acid composition to predict protein subcellular location: Approached with amino acid composition distribution. Amino Acids, 2008, 35, 321-327.
[86]
Chou, K.C. Some remarks on protein attribute prediction and pseudo amino acid composition (50th Anniversary Year Review). J. Theor. Biol., 2011, 273, 236-247.
[87]
Chen, W.; Lin, H.; Chou, K.C. Pseudo nucleotide composition or PseKNC: An effective formulation for analyzing genomic sequences. Mol. Biosyst., 2015, 11, 2620-2634.
[88]
Cheng, X.; Xiao, X.; Chou, K.C. pLoc-mPlant: Predict subcellular localization of multi-location plant proteins via incorporating the optimal GO information into general PseAAC. Mol. Biosyst., 2017, 13, 1722-1727.
[89]
Cheng, X.; Xiao, X. pLoc-mVirus: Predict subcellular localization of multi-location virus proteins via incorporating the optimal GO information into general PseAAC. Gene, 2017, 628, 315-321.
[90]
Cheng, X.; Zhao, S.G.; Lin, W.Z.; Xiao, X.; Chou, K.C. pLoc-mAnimal: Predict subcellular localization of animal proteins with both single and multiple sites. Bioinformatics, 2017, 33, 3524-3531.
[91]
Xiao, X.; Cheng, X.; Su, S.; Nao, Q.; Chou, K.C. pLoc-mGpos: Incorporate key gene ontology information into general PseAAC for predicting subcellular localization of Gram-positive bacterial proteins. Nat. Sci., 2017, 9, 331-349.
[92]
Cheng, X.; Xiao, X.; Chou, K.C. pLoc-mEuk: Predict subcellular localization of multi-label eukaryotic proteins by extracting the key GO information into general PseAAC. Genomics, 2018, 110, 50-58.
[93]
Cheng, X.; Xiao, X. pLoc-mGneg: Predict subcellular localization of Gram-negative bacterial proteins by deep gene ontology learning via general PseAAC. Genomics, 2018, 110, 231-239.
[94]
Cheng, X.; Xiao, X.; Chou, K.C. pLoc-mHum: Predict subcellular localization of multi-location human proteins via general PseAAC to winnow out the crucial GO information. Bioinformatics, 2018, 34, 1448-1456.
[99]
Cheng, X.; Zhao, S.G.; Xiao, X. iATC-mISF: A multi-label classifier for predicting the classes of anatomical therapeutic chemicals. Bioinformatics, 2017, 33, 341-346.
[100]
Chou, K.C. Some remarks on predicting multi-label attributes in molecular biosystems. Mol. Biosyst., 2013, 9, 1092-1100.
[101]
Chen, W.; Feng, P.M.; Lin, H.; Chou, K.C. iRSpot-PseDNC: Identify recombination spots with pseudo dinucleotide composition. Nucleic Acids Res., 2013, 41e68
[102]
Qiu, W.R.; Xiao, X. iRSpot-TNCPseAAC: Identify recombination spots with trinucleotide composition and pseudo amino acid components. Int. J. Mol. Sci., 2014, 15, 1746-1766.
[103]
Liu, B.; Wang, S.; Long, R.; Chou, K.C. iRSpot-EL: Identify recombination spots with an ensemble learning approach. Bioinformatics, 2017, 33, 35-41.
[104]
Yang, H.; Qiu, W.R.; Liu, G.; Guo, F.B.; Chen, W.; Chou, K.C.; Lin, H. iRSpot-Pse6NC: Identifying recombination spots in Saccharomyces cerevisiae by incorporating hexamer composition into general PseKNC. Int. J. Biol. Sci., 2018, 14, 883-891.
[105]
Lin, H.; Deng, E.Z.; Ding, H.; Chen, W.; Chou, K.C. iPro54-PseKNC: A sequence-based predictor for identifying sigma-54 promoters in prokaryote with pseudo k-tuple nucleotide composition. Nucleic Acids Res., 2014, 42, 12961-12972.
[106]
Chen, W.; Feng, P.; Yang, H.; Ding, H.; Lin, H. iRNA-AI: Identifying the adenosine to inosine editing sites in RNA sequences. Oncotarget, 2017, 8, 4208-4217.
[107]
Cheng, X.; Zhao, S.G.; Xiao, X.; Chou, K.C. iATC-mHyb: A hybrid multi-label classifier for predicting the classification of anatomical therapeutic chemicals. Oncotarget, 2017, 8, 58494-58503.
[108]
Du, Q.S.; Wang, S.Q.; Xie, N.Z.; Wang, Q.Y.; Huang, R.B. 2L-PCA: A two-level principal component analyzer for quantitative drug design and its applications. Oncotarget, 2017, 8, 70564-70578.
[109]
Liu, B.; Wu, H. Pse-in-One 2.0: An improved package of web servers for generating various modes of pseudo components of DNA, RNA, and protein Sequences. Nat. Sci., 2017, 9, 67-91.
[110]
Liu, B.; Wu, H.; Zhang, D.; Wang, X.; Chou, K.C. Pse-Analysis: A python package for DNA/RNA and protein/peptide sequence analysis based on pseudo components and kernel methods. Oncotarget, 2017, 8, 13338-13343.
[111]
Liu, B.; Yang, F.; Chou, K.C. 2L-piRNA: A two-layer ensemble classifier for identifying piwi-interacting RNAs and their function. Mol. Ther. Nucleic Acids, 2017, 7, 267-277.
[112]
Niu, B.; Zhang, M.; Du, P.; Jiang, L.; Qin, R.; Su, Q.; Chen, F.; Du, D.; Shu, Y. Small molecular floribundiquinone B derived from medicinal plants inhibits acetylcholinesterase activity. Oncotarget, 2017, 8, 57149-57162.
[113]
Su, Q.; Lu, W.; Du, D.; Chen, F.; Niu, B. Prediction of the aquatic toxicity of aromatic compounds to tetrahymena pyriformis through support vector regression. Oncotarget, 2017, 8, 49359-49369.
[114]
Wang, J.; Yang, B.; Revote, J.; Leier, A.; Marquez-Lago, T.T.; Webb, G.; Song, J.; Lithgow, T.; Chou, K.C. POSSUM: A bioinformatics toolkit for generating numerical sequence feature descriptors based on PSSM profiles. Bioinformatics, 2017, 33, 2756-2758.
[115]
Zhang, Z.D.; Liang, K.; Li, K.; Wang, G.Q.; Zhang, K.W.; Cai, L.; Zha, S.T. Chlorella vulgaris induces apoptosis of human Non-Small Cell Lung Carcinoma (NSCLC) cells. Med. Chem., 2017, 13, 560-568.
[117]
Liu, B.; Yang, F.; Huang, D.S.; Chou, K.C. iPromoter-2L: A two-layer predictor for identifying promoters and their types by multi-window-based PseKNC. Bioinformatics, 2018, 34, 33-40.
[118]
Feng, P.M.; Chen, W.; Lin, H.; Chou, K.C. iHSP-PseRAAAC: Identifying the heat shock protein families using pseudo reduced amino acid alphabet composition. Anal. Biochem., 2013, 442, 118-125.
[119]
Cai, L.; Huang, T.; Su, J.; Zhang, X.; Chen, W.; Zhang, F.; He, L. Implications of newly identified brain eQTL genes and their interactors in Schizophrenia. Mol. Ther. Nucleic Acids, 2018, 12, 433-442.
[120]
Chou, K.C.; Shen, H.B. Recent advances in developing web-servers for predicting protein attributes. Nat. Sci., 2009, 1, 63-92.
[121]
Liu, B.; Fang, L.; Liu, F.; Wang, X.; Chen, J.; Chou, K.C. Identification of real microRNA precursors with a pseudo structure status composition approach. PLoS One, 2015, 10e0121501
[122]
Liu, B.; Fang, L.; Long, R.; Lan, X.; Chou, K.C. iEnhancer-2L: A two-layer predictor for identifying enhancers and their strength by pseudo k-tuple nucleotide composition. Bioinformatics, 2016, 32, 362-369.
[123]
Jia, J.; Liu, Z.; Xiao, X. iPPI-Esml: An ensemble classifier for identifying the interactions of proteins by incorporating their physicochemical properties and wavelet transforms into PseAAC. J. Theor. Biol., 2015, 377, 47-56.
[124]
Maroko, P.R.; Radvany, P.; Braunwald, E.; Hale, S.L. Reduction of infarct size by oxygen inhalation following acute coronary occlusion. Circulation, 1975, 52, 360-368.
[125]
Sterling, D.L.; Thornton, J.D.; Swafford, A.; Gottlieb, S.F.; Bishop, S.P.; Stanley, A.W.; Downey, J.M. Hyperbaric oxygen limits infarct size in ischemic rabbit myocardium in vivo. Circulation, 1993, 88, 1931-1936.
[126]
Chen, C.; Chen, W.; Li, Y.; Dong, Y.; Teng, X.; Nong, Z.; Pan, X.; Lv, L.; Gao, Y.; Wu, G. Hyperbaric oxygen protects against myocardial reperfusion injury via the inhibition of inflammation and the modulation of autophagy. Oncotarget, 2017, 8, 111522-111534.
[127]
Chen, C.; Chen, W.; Nong, Z.; Ma, Y.; Qiu, S.; Wu, G. Cardioprotective effects of combined therapy with hyperbaric oxygen and diltiazem pretreatment on myocardial ischemia-reperfusion injury in rats. Cell. Physiol. Biochem., 2016, 38, 2015-2029.
[128]
Madias, J.E.; Madias, N.E.; Hood, W.B. Jr. Precordial ST-segment mapping. 2. Effects of oxygen inhalation on ischemic injury in patients with acute myocardial infarction. Circulation, 1976, 53, 411-417.
[129]
Dekleva, M.; Neskovic, A.; Vlahovic, A.; Putnikovic, B.; Beleslin, B.; Ostojic, M. Adjunctive effect of hyperbaric oxygen treatment after thrombolysis on left ventricular function in patients with acute myocardial infarction. Am. Heart J., 2004, 148e14
[130]
Dekleva, M.; Ostojic, M.; Neskovic, A.; Mazic, S.; Vlahovic, A.; Suzic, L.J.; Dekleva, N. Early detection of myocardial viability by hyperbaric oxygenation in patients with acute myocardial infarction treated with thrombolysis. Gen. Physiol. Biophys., 2009, 28, 127-134.
[131]
Khan, M.; Meduru, S.; Pandian, R.P.; Rivera, B.K.; Kuppusamy, P. Effect of oxygenation on stem-cell therapy for myocardial infarction. Adv. Exp. Med. Biol., 2011, 701, 175-181.
[132]
Tezcan, O.; Karahan, O.; Alan, M.; Ekinci, C.; Yavuz, C.; Demirtas, S.; Ekinci, A.; Caliskan, A. Hyperbaric oxygen preconditioning provides preliminary protection against doxorubicin cardiotoxicity. Acta Cardiol. Sin., 2017, 33, 150-155.
[133]
Özkan, M.T.; Vural, A.; Çiçek, Ö.F.; Yener, A.Ü.; Özcan, S.; Toman, H.; Ünver, A.; Saçar, M. Is hyperbaric oxygen or ozone effective in experimental endocarditis? J. Surg. Res., 2016, 202, 66-70.
[134]
Wunderlich, T.; Frey, N.; Kähler, W.; Lutz, M.; Radermacher, P.; Klapa, S.; Koch, I.; Tillmans, F.; Witte, J.; Koch, A. Influence of hyperoxia on diastolic myocardial and arterial endothelial function. Undersea Hyperb. Med., 2017, 44, 521-533.
[135]
Kozakiewicz, M.; Slomko, J.; Buszko, K.; Sinkiewicz, W.; Klawe, J.J.; Tafil-Klawe, M.; Newton, J.L.; Zalewski, P. Acute biochemical, cardiovascular and autonomic response to hyperbaric (4 atm) exposure in healthy subjects. Evid. Based Compl. Alt. Med., 2018, 20185913176
[136]
Bennett, M.; Roeckl-Wiedmann, I.; Debus, S. Hyperbaric oxygen therapy for chronic wounds. Cochrane Database Syst. Rev., 2012, 4CD004123
[137]
Schreml, S.; Szeimies, R.M.; Prantl, L.; Karrer, S.; Landthaler, M.; Babilas, P. Oxygen in acute and chronic wound healing. Br. J. Dermatol., 2010, 163, 257-268.
[138]
Niinikoski, J.H. Clinical hyperbaric oxygen therapy, wound perfusion and transcutaneous oximetry. World J. Surg., 2004, 28, 307-311.
[139]
Boykin, J.V. Jr. Re: Oxygen in wound healing: More than a nutrient. Wound Repair Regen., 2001, 9, 391-392.
[140]
Thackham, J.A.; McElwain, D.L.; Long, R.J. The use of hyperbaric oxygen therapy to treat chronic wounds: A review. Wound Repair Regen., 2008, 16, 321-330.
[141]
Sheikh, A.Y.; Rollins, M.D.; Hopf, H.W.; Hunt, T.K. Hyperoxia improves microvascular perfusion in a murine wound model. Wound Repair Regen., 2005, 13, 303-308.
[142]
Klemetti, E.; Rico-Vargas, S.; Mojon, P. Short duration hyperbaric oxygen treatment effects blood flow in rats: Pilot observations. Lab. Anim., 2005, 39, 116-121.
[143]
Sander, A.L.; Henrich, D.; Muth, C.M.; Marzi, I.; Barker, J.H.; Frank, J.M. In vivo effect of hyperbaric oxygen on wound angiogenesis and epithelialization. Wound Repair Regen., 2009, 17, 179-184.
[144]
Zhao, L.L.; Davidson, J.D.; Wee, S.C.; Roth, S.I.; Mustoe, T.A. Effect of hyperbaric oxygen and growth factors on rabbit ear ischemic ulcers. Arch. Surg., 1994, 129, 1043-1049.
[145]
Helmers, R.; Milstein, D.M.; van Hulst, R.A.; de Lange, J. Hyperbaric oxygen therapy accelerates vascularization in keratinized oral mucosal surgical flaps. Head Neck, 2014, 36, 1241-1247.
[146]
Sciubba, J.J.; Goldenberg, D. Oral complications of radiotherapy. Lancet Oncol., 2006, 7, 175-183.
[147]
Abendstein, H.; Nordgren, M.; Boysen, M.; Jannert, M.; Silander, E.; Ahlner-Elmqvist, M.; Hammerlid, E.; Bjordal, K. Quality of life and head and neck cancer: A 5 year prospective study. Laryngoscope, 2005, 115, 2183-2192.
[148]
Stone, H.B.; Coleman, C.N.; Anscher, M.S.; McBride, W.H. Effects of radiation on normal tissue: Consequences and mechanisms. Lancet Oncol., 2003, 4, 529-536.
[149]
Handschel, J.; Sunderkötter, C.; Kruse-Lösler, B.; Prott, F.J.; Meyer, U.; Piffko, J.; Joos, U. Late effects of radiotherapy on oral mucosa in humans. Eur. J. Oral Sci., 2001, 109, 95-102.
[150]
Riekki, R.; Jukkola, A.; Sassi, M.L.; Höyhtyä, M.; Kallioinen, M.; Risteli, J.; Oikarinen, A. Modulation of skin collagen metabolism by irradiation: Collagen synthesis is increased in irradiated human skin. Br. J. Dermatol., 2000, 142, 874-880.
[151]
Richter, K.K.; Fink, L.M.; Hughes, B.M.; Sung, C.C.; Hauer-Jensen, M. Is the loss of endothelial thrombomodulin involved in the mechanism of chronicity in late radiation enteropathy? Radiother. Oncol., 1997, 44, 65-71.
[152]
Marx, R.E.; Ehler, W.J.; Tayapongsak, P.; Pierce, L.W. Relationship of oxygen dose to angiogenesis induction in irradiated tissue. Am. J. Surg., 1990, 160, 519-524.
[153]
Svalestad, J.; Hellem, S.; Thorsen, E.; Johannessen, A.C. Effect of hyperbaric oxygen treatment on irradiated oral mucosa: Microvessel density. Int. J. Oral Max. Surg., 2015, 44, 301-307.
[154]
Muhonen, A.; Haaparanta, M.; Grönroos, T.; Bergman, J.; Knuuti, J.; Hinkka, S.; Happonen, R.P. Osteoblastic activity and neoangiogenesis in distracted bone of irradiated rabbit mandible with or without hyperbaric oxygen treatment. Int. J. Oral Max. Surg., 2004, 33, 173-178.
[155]
Støre, G.; Smith, H.J.; Larheim, T.A. Dynamic MR imaging of mandibular osteoradionecrosis. Acta Radiol., 2000, 41, 31-37.
[156]
Hopf, H.W.; Gibson, J.J.; Angeles, A.P.; Constant, J.S.; Feng, J.J.; Rollins, M.D. Zamirul, Hussain, M.; Hunt, T.K. Hyperoxia and angiogenesis. Wound Repair Regen., 2005, 13, 558-564.
[157]
Shweiki, D.; Itin, A.; Soffer, D.; Keshet, E. Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature, 1992, 359, 843-845.
[158]
Somaiom, F. Netol.; Ikejiri, A.T.; Bertoletto, P.R.; Chaves, J.C.; Teruya, R.; Fagundes, D.J. Hyperbaric oxygenation and the genic expression related to oxidative stress in the heart of mice during intestinal ischemia and reperfusion. Acta Cir. Bras., 2017, 32, 913-923.
[159]
Nyabanga, C.T.; Kulkarni, G.; Shen, B. Hyperbaric oxygen therapy for chronic antibiotic-refractory ischemic pouchitis. Gastroenterol. Rep., 2017, 5, 320-321.
[160]
Daniel, R.A.; Cardoso, V.K.; Góis, E., Jr; Parra, R.S.; Garcia, S.B.; Rocha, J.J.; Féres, O. Effect of hyperbaric oxygen therapy on the intestinal ischemia reperfusion injury. Acta Cir. Bras., 2011, 26, 463-469.
[161]
Zulec, M.; Volf, A.; Puharić, Z. Hyperbaric oxygen therapy in treating post-ischemic pain caused by polycythemia vera complications: A case report. Undersea Hyperb. Med., 2015, 42, 607-611.
[162]
Lukiswanto, B.S.; Yuniarti, W.M.; Motulo, Y.Y. Effects of hyperbaric therapy on liver morphofunctional of rabbits (Oryctolagus cuniculus) after hind limb ischemia-reperfusion injury. Vet. World, 2017, 10, 1337-1342.
[163]
Kihara, K.; Ueno, S.; Sakoda, M.; Aikou, T. Effects of hyperbaric oxygen exposure on experimental hepatic ischemia reperfusion injury: relationship between its timing and neutrophil sequestration. Liver Transpl., 2005, 11, 1574-1580.
[164]
Migliorini, F.; Bianconi, F.; Bizzotto, L.; Porcaro, A.B.; Artibani, W. Acute ischemia of the glans penis after circumcision treated with hyperbaric therapy and pentoxifylline: Case report and revision of the literature. Urol. Int., 2018, 100, 361-363.
[165]
Tobias, D.; Julia, H.; Petru, B.; Otto, P.; Thomas, Z.; Frank, H.; Erich, M.; Günter, W.; Wolfgang, S. Combined hyperbaric oxygen partial pressure at 1.4 bar with infrared radiation: A useful tool to improve tissue hypoxemia? Med. Sci. Monit., 2018, 24, 4009-4019.
[166]
Calvert, J.W.; Cahill, J.; Yamaguchi-Okada, M.; Zhang, J.H. Oxygen treatment after experimental hypoxia-ischemia in neonatal rats alters the expression of HIF-1alpha and its downstream target genes. J. Appl. Physiol., 2006, 101, 853-865.
[167]
Grim, P.S.; Gottlieb, L.J.; Boddie, A.; Batson, E. Hyperbaric oxygen therapy. JAMA, 1990, 263, 2216-2220.
[168]
Markus, Y.M.; Bell, M.J.; Evans, A.W. Ischemic scleroderma wounds successfully treated with hyperbaric oxygen therapy. J. Rheumatol., 2006, 33, 1694-1696.
[169]
Tuk, B.; Tong, M.; Fijneman, E.M.; van Neck, J.W. Hyperbaric oxygen therapy to treat diabetes impaired wound healing in rats. PLoS One, 2014, 9e108533
[170]
Faglia, E.; Favales, F.; Aldeghi, A.; Calia, P.; Quarantiello, A.; Oriani, G.; Michael, M.; Campagnoli, P.; Morabito, A. Adjunctive systemic hyperbaric oxygen therapy in treatment of severe prevalently ischemic diabetic foot ulcer. A randomized study. Diabetes Care, 1996, 19, 1338-1343.
[171]
Kibel, A.; Novak, S.; Cosic, A.; Mihaljevic, Z.; Falck, J.R.; Drenjancevic, I. Hyperbaric oxygenation modulates vascular reactivity to angiotensin-(1-7) in diabetic rats: potential role of epoxyeicosatrienoic acids. Diab. Vasc. Dis. Res., 2015, 12, 33-45.
[172]
Guo, Z.N.; Xu, L.; Hu, Q.; Matei, N.; Yang, P.; Tong, L.S.; He, Y.; Guo, Z.; Tang, J.; Yang, Y.; Zhang, J.H. Hyperbaric oxygen preconditioning attenuates hemorrhagic transformation through teactive oxygen species/thioredoxin-interacting protein/nod-like receptor protein 3 pathway in hyperglycemic middle cerebral artery occlusion rats. Crit. Care Med., 2016, 44e403
[173]
David, H.J.; Utsha, G.K.; Brenna, P.S.; Matthew, K.; Kevin, H.; David, S.L.; David, M.E. Alterations in mitochondrial respiration and reactive oxygen species in patients poisoned with carbon monoxide treated with hyperbaric oxygen. Intensive Care Med. Exp., 2018, 6, 4.
[174]
Jadhav, V.; Ostrowski, R.P.; Tong, W.; Matus, B.; Chang, C.; Zhang, J.H. Hyperbaric oxygen preconditioning reduces postoperative brain edema and improves neurological outcomes after surgical brain injury. Acta Neurochir. Suppl., 2010, 106, 217-220.
[175]
Peng, Z.; Ren, P.; Kang, Z.; Du, J.; Lian, Q.; Liu, Y.; Zhang, J.H.; Sun, X. Up-regulated HIF-1alpha is involved in the hypoxic tolerance induced by hyperbaric oxygen preconditioning. Brain Res., 2008, 1212, 71-78.
[176]
Zhang, Y.; Yang, Y.; Tang, H.; Sun, W.; Xiong, X.; Smerin, D.; Liu, J. Hyperbaric oxygen therapy ameliorates local brain metabolism, brain edema and inflammatory response in a blast-induced traumatic brain injury model in rabbits. Neurochem. Res., 2014, 39, 950-960.
[177]
Pan, X.; Chen, C.; Huang, J.; Wei, H.; Fan, Q. Neuroprotective effect of combined therapy with hyperbaric oxygen and madopar on 6-hydroxydopamine-induced Parkinson’s disease in rats. Neurosci. Lett., 2015, 600, 220-225.
[178]
Sun, L.; Xie, K.; Zhang, C.; Song, R.; Zhang, H. Hyperbaric oxygen preconditioning attenuates postoperative cognitive impairment in aged rats. Neuroreport, 2014, 25, 718-724.
[179]
Chen, X.; Li, Y.; Chen, W.; Nong, Z.; Huang, J.; Chen, C. Protective effect of hyperbaric oxygen on cognitive impairment induced by D-Galactose in mice. Neurochem. Res., 2016, 41, 3032-3041.
[180]
Harch, P.G.; Andrews, S.R.; Fogarty, E.F.; Lucarini, J.; Van Meter, K.W. Case control study: Hyperbaric oxygen treatment of mild traumatic brain injury persistent post-concussion syndrome and post-traumatic stress disorder. Med. Gas Res., 2017, 7, 156-174.
[181]
Chen, C.; Fan, Q.; Nong, Z.; Chen, W.; Li, Y.; Huang, L.; Feng, D.; Pan, X.; Lan, S. Hyperbaric oxygen attenuates withdrawal symptoms by regulating monoaminergic neurotransmitters and NO signaling pathway at nucleus accumbens in morphine-dependent rats. Neurochem. Res., 2018, 43, 531-539.
[182]
Xing, P.; Ma, K.; Li, L.; Wang, D.; Hu, G.; Long, W. The protection effect and mechanism of hyperbaric oxygen therapy in rat brain with traumatic injury. Acta Cir. Bras., 2018, 33, 341-353.
[183]
Long, Y.; Tan, J.; Nie, Y.; Lu, Y.; Mei, X.; Tu, C. Hyperbaric oxygen therapy is safe and effective for the treatment of sleep disorders in children with cerebral palsy. Neurol. Res., 2017, 39, 239-247.
[184]
Zeng, S.; Zhou, J.; Peng, Q.; Deng, W.; Zhang, M.; Zhao, Y.; Wang, T.; Zhou, Q. Sustained maternal hyperoxygenation improves aortic arch dimensions in fetuses with coarctation. Sci. Rep., 2016, 6, 39304.
[186]
Mori, H.; Shinohara, H.; Arakawa, Y.; Kanemura, H.; Ikemoto, T.; Imura, S.; Morine, Y.; Ikegami, T.; Yoshizumi, T.; Shimada, M. Beneficial effects of hyperbaric oxygen pretreatment on massive hepatectomy model in rats. Transplantation, 2007, 84, 1656-1661.
[187]
Terzioglu, D.; Uslu, L.; Simsek, G.; Atukeren, P.; Erman, H.; Gelisgen, R.; Ayvaz, S.; Aksu, B.; Uzun, H. The effects of hyperbaric oxygen treatment on total antioxidant capacity and prolidase activity after bile duct ligation in rats. J. Invest. Surg., 2017, 30, 376-382.
[188]
Peng, H.S.; Liao, M.B.; Zhang, M.Y.; Xie, Y.; Xu, L.; Zhang, Y.J.; Zheng, X.F.; Wang, H.Y.; Chen, Y.F. Synergistic inhibitory effect of hyperbaric oxygen combined with sorafenib on hepatoma cells. PLoS One, 2014, 9e100814
[189]
Yun, S.; Yankai, W.; Chanjuan, S.; Yuanrun, Z.; Wendong, Y.; Yuanyuan, M.; Lijuan, C.; Yiping, F.; Xiaofeng, Y.; Zuo-Bing, C. Hyperbaric oxygen therapy in liver diseases. Int. J. Med. Sci., 2018, 15, 782-787.
[190]
Moen, I.; Stuhr, L.E. Hyperbaric oxygen therapy and cancer-a review. Target. Oncol., 2012, 7, 233-242.
[191]
Weixler, V.H.; Yates, A.E.; Puchinger, M.; Zirngast, B.; Pondorfer, P.; Ratzenhofer-Komenda, B.; Amegah-Sakotnik, A.; Smolle-Juettner, F.M.; Dapunt, O. Hyperbaric oxygen in patients with ischemic stroke following cardiac surgery: A retrospective observational trial. Undersea Hyperb. Med., 2017, 44, 377-385.
[193]
Guensch, D.P.; Fischer, K.; Shie, N.; Lebel, J.; Friedrich, M.G. Hyperoxia exacerbates myocardial ischemia in the presence of acute coronary artery stenosis in swine. Circ. Cardiovasc. Interv., 2015, 8e002928
[194]
Lund, V.; Kentala, E.; Scheinin, H.; Klossner, J.; Koskinen, P.; Jalonen, J. Effect of hyperbaric conditions on plasma stress hormone levels and endothelin-1. Undersea Hyperb. Med., 1999, 26, 87-92.
[195]
Al-Waili, N.S.; Butler, G.J. Effects of hyperbaric oxygen on inflammatory response to wound and trauma: Possible mechanism of action. Sci. World J., 2006, 6, 425-441.
[196]
Lund, V.E.; Kentala, E.; Scheinin, H.; Lertola, K.; Klossner, J.; Aitasalo, K.; Sariola-Heinonen, K.; Jalonen, J. Effect of age and repeated hyperbaric oxygen treatments on vagal tone. Undersea Hyperb. Med., 2005, 32, 111-119.
[197]
Stellingwerff, T.; Glazier, L.; Watt, M.J.; LeBlanc, P.J.; Heigenhauser, G.J.; Spriet, L.L. Effects of hyperoxia on skeletal muscle carbohydrate metabolism during transient and steady-state exercise. J. Appl. Physiol., 2005, 98, 250-256.
[198]
Orbegozo, C.D.; Puflea, F.; Donadello, K.; Taccone, F.S.; Gottin, L.; Creteur, J.; Vincent, J.L.; De Backer, D. Normobaric hyperoxia alters the microcirculation in healthy volunteers. Microvasc. Res., 2015, 98, 23-28.
[199]
Hinkelbein, J.; Böhm, L.; Spelten, O.; Sander, D.; Soltész, S.; Braunecker, S. Hyperoxia-induced protein alterations in renal rat tissue: A quantitative proteomic approach to identify Hyperoxia-induced effects in cellular signaling pathways. Dis. Markers, 2015, 2015964263
[200]
Chen, C.F.; Liu, H.M.; Fang, H.S. Renal functions following hyperbaric oxygen toxicity in conscious rats. Proc. Natl. Sci. Counc. Repub. China B, 1987, 11, 66-71.
[201]
Sutherland, M.R.; Béland, C.; Lukaszewski, M.A.; Cloutier, A.; Bertagnolli, M.; Nuyt, A.M. Age- and sex-related changes in rat renal function and pathology following neonatal Hyperoxia exposure. Physiol. Rep., 2016, 4e12887
[202]
Tezcan, O.; Caliskan, A.; Demirtas, S.; Yavuz, C.; Kuyumcu, M.; Nergiz, Y.; Guzel, A.; Karahan, O.; Ari, S.; Soker, S.; Yalinkilic, I.; Turkdogan, K.A. Effects of hyperbaric oxygen treatment on renal system. Iran. J. Kidney Dis., 2017, 11, 18-22.
[203]
Ying, W. NAD+/NADH and NADP+/NADPH in cellular functions and cell death: Regulation and biological consequences. Antioxid. Redox Signal., 2008, 10, 179-206.