[1]
Shao, M.; Chang, Q.; Dodelet, J.P.; Chenitz, R. Recent advances in electrocatalysts for oxygen reduction reaction. Chem. Rev., 2016, 116, 3594-3657.
[2]
Chen, Z.; Higgins, D.; Yu, A.; Zhang, L.; Zhang, J. A review on non-precious metal electrocatalysts for PEM fuel cells. Energy Environ. Sci., 2011, 4, 3167-3192.
[3]
Du, J.; Wang, L.; Bai, L.; Zhang, P.; Song, A.; Shao, G. Effect of Ni nanoparticles on HG sheets modified by GO on the hydrogen evolution reaction. ACS Sustain. Chem. Eng., 2018, 6, 10335-10343.
[4]
Wang, X.X.; Cullen, D.A.; Pan, Y-T.; Hwang, S.; Wang, M.; Feng, Z.; Wang, J.; Engelhard, M.H.; Zhang, H.; He, Y.; Shao, Y.; Su, D.; More, K.L.; Spendelow, J.S.; Wu, G. Nitrogen-coordinated single cobalt atom catalysts for oxygen reduction in proton exchange membrane fuel cells. Adv. Mater., 2018, 301706758
[5]
Yang, W.; Yang, W.; Zhang, F.; Wang, G.; Shao, G. Hierarchical interconnected expanded graphitic ribbons embedded with amorphous carbon: An advanced carbon nanostructure for superior lithium and sodium storage. Small, 2018, 141802221
[6]
Zhang, H.; Hwang, S.; Wang, M.; Feng, Z.; Karakalos, S.; Luo, L.; Qiao, Z.; Xie, X.; Wang, C.; Su, D.; Shao, Y.; Wu, G. Single atomic iron catalysts for oxygen reduction in acidic media: Particle size control and thermal activation. J. Am. Chem. Soc., 2017, 139, 14143-14149.
[7]
Onodera, T.; Suzuki, S.; Mizukami, T.; Kanzaki, H. Enhancement of oxygen reduction activity with addition of carbon support for non-precious metal nitrogen doped carbon catalyst. J. Power Sources, 2011, 196, 7994-7999.
[8]
Song, A.; Cao, L.; Yang, W.; Li, Y.; Qin, X.; Shao, G. Uniform multilayer graphene-coated iron and iron-carbide as oxygen reduction catalyst. ACS Sustain. Chem.& Eng., 2018, 6, 4890-4898.
[9]
Peng, H.; Huang, J.; Zhao, M.; Zhang, Q.; Cheng, X.; Liu, X.; Qian, W.; Wei, F. Carbon: Nanoarchitectured graphene/CNT@porous carbon with extraordinary electrical conductivity and interconnected micro/mesopores for lithium‐sulfur batteries. Adv. Funct. Mater., 2014, 24, 2772-2781.
[10]
Du, Q.; Su, L.; Hou, L.; Sun, G.; Feng, M.; Yin, X.; Ma, Z.; Shao, G.; Gao, W. Rationally designed ultrathin Ni-Al layered double hydroxide and graphene heterostructure for high-performance asymmetric supercapacitor. J. Alloys Compd., 2018, 740, 1051-1059.
[11]
Su, L.; Gao, L.; Du, Q.; Hou, L.; Ma, Z.; Qin, X.; Shao, G. Construction of NiCo2O4@MnO2 nanosheet arrays for high-performance supercapacitor: Highly cross-linked porous heterostructure and worthy electrochemical double-layer capacitance contribution. J. Alloys Compd., 2018, 749, 900-908.
[12]
Li, Y.; Wang, L.; Song, A.; Xia, M.; Li, Z.; Shao, G. The study on the active origin of electrocatalytic water splitting using Ni-MoS2 as example. Electrochim. Acta, 2018, 268, 268-275.
[13]
Sun, G.; Yin, X.; Yang, W.; Zhang, J.; Du, Q.; Ma, Z.; Shao, G.; Wang, Z. Synergistic effects of ion doping and surface-modifying for lithium transition-metal oxide: Synthesis and characterization of La2O3-modified LiNi1/3Co1/3Mn1/3O2. Electrochim. Acta, 2018, 272, 11-21.
[14]
Zhou, X.; Qiao, J.; Yang, L.; Zhang, J. A review of graphene-based nanostructural materials for both catalyst supports and metal-free catalysts in PEM fuel cell oxygen reduction reactions. Adv. Energy Mater., 2014, 4, 1289-1295.
[15]
Amiinu, I.S.; Zhang, J.; Kou, Z.; Liu, X.; Asare, O.K.; Zhou, H.; Cheng, K.; Zhang, H.; Mai, L.; Pan, M.; Mu, S. Self-organized 3D porous graphene dual-doped with biomass-sponsored nitrogen and sulfur for oxygen reduction and evolution. ACS Appl. Mater. Interfaces, 2016, 8, 29408-29418.
[16]
Yang, W.; Yang, W.; Kong, L.; Song, A.; Qin, X.; Shao, G. Phosphorus-doped 3D hierarchical porous carbon for high-performance supercapacitors: A balanced strategy for pore structure and chemical composition. Carbon, 2018, 127, 557-567.
[17]
Lee, J.; Kim, J.; Hyeon, T. Recent progress in the synthesis of porous carbon materials. Adv. Mater., 2010, 18, 2073-2094.
[18]
Yang, W.; Ding, F.; Shao, G.; Sang, L.; Yang, W.; Ma, Z. Template-free synthesis of ultrathin porous carbon shell with excellent conductivity for high-rate supercapacitors. Carbon, 2017, 111, 419-427.
[19]
Yang, W.; Yang, W.; Song, A.; Gao, L.; Su, L.; Shao, G. Supercapacitance of nitrogen-sulfur-oxygen co-doped 3D hierarchical porous carbon in aqueous and organic electrolyte. J. Power Sources, 2017, 359, 556-567.
[20]
Yang, W.; Yang, W.; Kong, L.; Song, A.; Qin, X. Synthesis of three-dimensional hierarchical porous carbon for high-performance supercapacitors. Ionics, 2018, 6176, 1-9.
[21]
Zhao, P.; Xu, W.; Hua, X.; Luo, W.; Chen, S.; Cheng, G. Facile synthesis N-doped Fe3C@CNT/porous carbon hybrid for an advanced oxygen reduction and water oxidation electrocatalyst. J. Phys. Chem. C, 2016, 120, 11006-11013.
[22]
Yang, W.; Yang, W.; Song, A.; Sun, G.; Shao, G. 3D interconnected porous carbon nanosheets/carbon nanotubes as a polysulfide reservoir for high performance lithium-sulfur batteries. Nanoscale, 2018, 10, 816-824.
[23]
Chang, H.C.; Park, S.H.; Woo, S.I. Facile growth of n-doped CNTs on Vulcan carbon and the effects of iron content on electrochemical activity for oxygen reduction reaction. Int. J. Hydrogen Energy, 2012, 37, 4563-4570.
[24]
Wang, D.; Ma, Z.; Xie, Y.; Zhang, M.; Zhao, N.; Song, H. Fe/N-doped graphene with rod-like CNTs as an air-cathode catalyst in microbial fuel cells. RSC Advances, 2018, 8, 1203-1209.
[25]
Gao, P.; Sun, M.; Wu, X.; Zhou, S.; Deng, X.; Xie, Z.; Xiao, L.; Jiang, L.; Huang, Q. (B,N)-Doped 3D porous graphene–CNTs synthesized by chemical vapor deposition as a bi-functional catalyst for ORR and HER. RSC Advances, 2018, 8, 26934-26937.
[26]
Chen, C.; Zhou, Z.Y.; Zhang, X.S.; Sun, S. Synthesis of Fe, N-doped graphene/carbon black composite with high catalytic activity for oxygen reduction reaction. J. Electrochem., 2016, 22, 25-31.
[27]
Wong, W.Y.; Daud, W.R.W.; Mohamad, A.B.; Kadhum, A.A.H.; Loh, K.S.; Majlan, E.H. Recent progress in nitrogen-doped carbon and its composites as electrocatalysts for fuel cell applications. Int. J. Hydrogen Energy, 2013, 38, 9370-9386.
[28]
Choi, J.Y.; Higgins, D.; Jiang, G.; Hsu, R.; Qiao, J.; Chen, Z. Iron-tetracyanobenzene complex derived non-precious catalyst for oxygen reduction reaction. Electrochim. Acta, 2015, 162, 224-229.
[29]
Zhang, S.; Zhang, H.; Liu, Q.; Chen, S. Fe–N doped carbon nanotube/graphene composite: Facile synthesis and superior electrocatalytic activity. J. Mater. Chem. A , 2013, 1, 3302-3308.
[30]
Zhang, Y.; Jiang, W.J.; Zhang, X.; Guo, L.; Hu, J.S.; Wei, Z.; Wan, L. J. Engineering self-assembled N-doped graphene-carbon nanotube composites towards efficient oxygen reduction electrocatalysts. Phys. Chem. Chem. Phys., 2014, 16, 13605-13609.
[31]
Dou, S.; Li, X.; Tao, L.; Huo, J.; Wang, S. Cobalt nanoparticle-embedded carbon nanotube/porous carbon hybrid derived from MOF-encapsulated Co3O4 for oxygen electrocatalysis. Chem. Commun. , 2016, 52, 9727-9730.
[32]
Pegis, M.L.; Wise, C.F.; Martin, D.J.; Mayer, J.M. Oxygen reduction by homogeneous molecular catalysts and electrocatalysts. Chem. Rev., 2018, 118, 2340-2391.
[33]
Jia, Y.; Zhang, L.; Du, A.; Gao, G.; Chen, J.; Yan, X.; Brown, C.L.; Yao, X. Defect graphene as a trifunctional catalyst for electrochemical reactions. Adv. Mater., 2016, 28, 9532-9538.
[34]
Nie, Y.; Li, L.; Wei, Z. Recent advancements in Pt and Pt-free catalysts for oxygen reduction reaction. Chem. Soc. Rev., 2015, 44, 2168-2201.
[35]
Shui, J.; Wang, M.; Du, F.; Dai, L. N-doped carbon nanomaterials are durable catalysts for oxygen reduction reaction in acidic fuel cells. Sci. Adv., 2015, 1e1400129
[36]
Sun, H.; Chen, G.; Sunarso, J.; Dai, J.; Zhou, W.; Shao, Z. Molybdenum and niobium codoped B-site-ordered double perovskite catalyst for efficient oxygen evolution reaction. ACS Appl. Mater. Interfaces, 2018, 10, 16939-16942.
[37]
Lei, Y.; Wang, Q.; Chen, Z.; Wu, N.; Wang, Y.; Wang, B.; Wang, Y. Fe/Fe3C@C nanoparticles encapsulated in N-doped graphene-CNTs framework as an efficient bifunctional oxygen electrocatalyst for robust rechargeable Zn-air batteries. J. Mater. Chem. A , 2017, 6, 516-526.
[38]
Yang, Z.; Liu, X.; Tian, Y. Insights into the wettability transition of nanosecond laser ablated surface under ambient air exposure. J. Colloid Interface Sci., 2018, 533, 268-277.
[39]
Tong, X.; Hai, Z.; Cui, D.; Gao, L.; Zhang, Q.; Xu, H.; Ma, Y.; Xue, C.; Liu, J. Investigation of lattice distortion of Co3O4 nanoparticles prepared by a carbon-assisted method. Microelectron. Eng., 2016, 159, 17-20.
[40]
Jiang, W.J.; Gu, L.; Li, L.; Zhang, Y.; Zhang, X.; Zhang, L.J.; Wang, J.Q.; Hu, J.S.; Wei, Z.D.; Wan, L.J. Understanding the high activity of Fe-N-C electrocatalysts in oxygen reduction: Fe/Fe3C nanoparticles boost the activity of Fe-Nx. J. Am. Chem. Soc., 2016, 138, 3570-3578.
[41]
Cheng, Q.Q.; Han, S.B.; Mao, K.; Chen, C.; Yang, L.; Zou, Z.; Gu, M.; Hu, Z.; Yang, H. Co nanoparticle embedded in atomically-dispersed Co-N-C nanofibers for oxygen reduction with high activity and remarkable durability. Nano Energy, 2018, 52, 485-493.
[42]
Jiang, H.; Liu, Y.; Hao, J.; Wang, Y.; Li, W.; Li, J. Self-assembly synthesis of cobalt and nitrogen co-embedded trumpet flower-like porous carbons for catalytic oxygen reduction in alkaline and acidic media. ACS Sustain. Chem. Eng., 2017, 5, 5341-5350.
[43]
Subramanian, N.P.; Li, X.; Nallathambi, V.; Kumaraguru, S.P.; Colon, M.H.; Wu, G.; Lee, J.W.; Popov, B.N. Nitrogen-modified carbon-based catalysts for oxygen reduction reaction in polymer electrolyte membrane fuel cells. J. Power Sources, 2009, 188, 38-44.
[44]
Liu, G.; Li, X.; Ganesan, P.; Popov, B.N. Studies of oxygen reduction reaction active sites and stability of nitrogen-modified carbon composite catalysts for PEM fuel cells. Electrochim. Acta, 2010, 55, 2853-2858.
[45]
Eisenberg, D.; Stroek, W.; Geels, N.J.; Sandu, C.S.; Heller, A.; Yan, N.; Rothenberg, G. A simple synthesis of an N-doped carbon ORR catalyst: Hierarchical micro/meso/macro porosity and graphitic shells. Chemistry, 2015, 22, 501-505.
[46]
Song, A.; Yang, W.; Yang, W.; Sun, G.; Yin, X.; Gao, L.; Wang, Y.; Qin, X.; Shao, G. Facile synthesis of cobalt nanoparticles entirely encapsulated in slim nitrogen-doped carbon nanotubes as oxygen reduction catalyst. ACS Sustain. Chem. Eng., 2017, 5, 3973-3981.
[47]
Bocchetta, P.; Gianoncelli, A.; Abyaneh, M.K.; Kiskinova, M.; Amati, M.; Gregoratti, L.; Jezeršek, D.; Mele, C.; Bozzini, B. Electrosynthesis of Co/PPy nanocomposites for ORR electrocatalysis: A study based on quasi-in situ X-ray absorption, fluorescence and in situ Raman spectroscopy. Electrochim. Acta, 2014, 137, 535-545.
[48]
Bozzini, B.; Bocchetta, P.; Gianoncelli, A.; Mele, C.; Kiskinova, M. Electrodeposition of Co/CoO nanoparticles onto graphene for ORR electrocatalysis: A study based on micro-X-ray absorption spectroscopy and X-ray fluorescence mapping. Acta Chim. Slov., 2014, 61, 263-271.
[49]
Li, L.; Xie, W.; Chen, J.; Yang, J. ZIF-67 derived P/Ni/Co/NC nanoparticles as highly efficient electrocatalyst for oxygen reduction reaction (ORR). J. Solid State Chem., 2018, 264, 1-5.
[50]
Wang, J.; Hao, J.; Liu, D.; Qin, S.; Portehault, D.; Li, Y.; Chen, Y.; Lei, W. Porous boron carbon nitride nanosheets as efficient metal-free catalysts for the oxygen reduction reaction in both alkaline and acidic solutions. ACS Energy Lett., 2017, 2, 306-312.
[51]
Wang, Q.; Shang, L.; Shi, R.; Zhang, X.; Waterhouse, G.I.N.; Wu, L.Z.; Tung, C.H.; Zhang, T.R. 3D carbon nanoframe scaffold-immobilized Ni3FeN nanoparticle electrocatalysts for rechargeable zinc-air batteries’ cathodes. Nano Energy, 2017, 40, 382-389.
[52]
Jin, H.; Huang, H.; He, Y.; Feng, X.; Wang, S.; Dai, L.; Wang, J. Graphene quantum dots supported by graphene nanoribbons with ultrahigh electrocatalytic performance for oxygen reduction. J. Am. Chem. Soc., 2015, 137, 7588-7591.
[53]
Zhang, H.; Hwang, S.; Wang, M.; Feng, Z.; Karakalos, S.; Luo, L.; Qiao, Z.; Xie, X.; Wang, C.; Su, D.; Shao, Y.; Wu, G. Single atomic iron catalysts for oxygen reduction in acidic media: Particle size control and thermal activation. J. Am. Chem. Soc., 2017, 139, 14143.
[54]
Huang, T.; Fang, H.; Mao, S.; Yu, J.; Qi, L. In-situ synthesized TiC@CNT as high-performance catalysts for oxygen reduction reaction. Carbon, 2018, 126, 566-573.
[55]
Yadav, R.M.; Wu, J.; Kochandra, R.; Ma, L.; Tiwary, C.S.; Ge, L.; Ye, G.; Vajtai, R.; Lou, J.; Ajayan, P.M. Carbon nitrogen nanotubes as efficient bifunctional electrocatalysts for oxygen reduction and evolution reactions. ACS Appl. Mater. Interfaces, 2015, 7, 11991-12000.
[56]
Sun, T.; Xu, L.; Li, S.; Chai, W.; Huang, Y.; Yan, Y.; Chen, J. Cobalt-nitrogen-doped ordered macro-/mesoporous carbon for highly efficient oxygen reduction reaction. Appl. Catal. B Environ., 2016, 193, 1-8.
[57]
Qiao, Z.; Zhang, H.; Karakalos, S.; Hwang, S.; Xue, J.; Chen, M.; Su, D.; Wu, G. 3D polymer hydrogel for high-performance atomic iron-rich catalysts for oxygen reduction in acidic media. Appl. Catal. B Environ., 2017, 219, 629-639.
[58]
Qu, K.; Zheng, Y.; Dai, S.; Qiao, S.Z. Graphene oxide-polydopamine derived N, S-codoped carbon nanosheets as superior bifunctional electrocatalysts for oxygen reduction and evolution. Nano Energy, 2016, 19, 373-381.
[59]
Zhao, Y.; Huang, S.; Xia, M.; Rehman, S.; Mu, S.; Kou, Z.; Zhang, Z.; Chen, Z.; Gao, F.; Hou, Y.N-P-O. Co-doped high performance 3D graphene prepared through red phosphorous-assisted “Cutting-Thin” technique: A universal synthesis and multifunctional applications. Nano Energy, 2016, 28, 346-355.
[60]
Tian, L.L.; Yang, J.; Weng, M.; Tan, R.; Zheng, J.X.; Chen, H.; Zhuang, Q.C.; Dai, L.; Pan, F. Fast Diffusion of O2 on nitrogen-doped graphene to enhance oxygen reduction and its application for high-rate Zn-air batteries. ACS Appl. Mater. Interfaces, 2017, 9, 7125-7130.
[61]
Fu, G.; Yan, X.; Chen, Y.; Xu, L.; Sun, D.; Lee, J.M.; Tang, Y. Boosting bifunctional oxygen electrocatalysis with 3D graphene aerogel-supported Ni/MnO particles. Adv. Mater., 2017, 301704609
[62]
Liu, L.; Zeng, G.; Chen, J.; Bi, L.; Dai, L.; Wen, Z. N-doped porous carbon nanosheets as pH-universal ORR electrocatalyst in various fuel cell devices. Nano Energy, 2018, 49, 393-402.
[63]
Shi, Q.; Wang, Y.; Wang, Z.; Lei, Y.; Wang, B.; Wu, N.; Han, C.; Xie, S.; Gou, Y. Three-dimensional (3D) interconnected networks fabricated via in-situ growth of N-doped graphene/ carbon nanotubes on Co-containing carbon nanofibers for enhanced oxygen reduction. Nano Res., 2016, 9, 317-328.
[64]
Liu, Y.; Wang, H.; Lin, D.; Zhao, J.; Liu, C.; Xie, J.; Cui, Y. A Prussian blue route to nitrogen-doped graphene aerogels as efficient electrocatalysts for oxygen reduction with enhanced active site accessibility. Nano Res., 2017, 10, 1213-1222.
[65]
Du, J.; Wang, L.; Bai, L.; Dang, S.; Su, L.; Qin, X.; Shao, G. Datura-like Ni-HG-rGO as highly efficient electrocatalyst for hydrogen evolution reaction in alkaline conditions. J. Colloid Interface Sci., 2019, 535, 75-83.
[66]
Yu, D.; He, X. 3D cobalt-embedded nitrogen-doped graphene xerogel as an efficient electrocatalyst for oxygen reduction reaction in an alkaline medium. J. Appl. Electrochem., 2016, 47, 13-23.
[67]
Liu, D.; Wu, C.; Chen, S.; Ding, S.; Xie, Y.; Wang, C.; Wang, T.; Haleem, Y.A.; Rehman, Z.U.; Sang, Y. In situ trapped high-density single metal atoms within graphene: Iron-containing hybrids as representatives for efficient oxygen reduction. Nano Res., 2018, 11, 2217-2228.
[68]
Chao, L.; Qin, Y.; Liu, Y.; Kong, Y.; Chu, F. Electrochemically exfoliating graphite into N-doped graphene and its use as a high efficient electrocatalyst for oxygen reduction reaction. J. Solid State Electrochem., 2017, 21, 1287-1295.
[69]
Zhang, Y.; Jiang, W.J.; Guo, L.; Zhang, X.; Hu, J.S.; Wei, Z.; Wan, L.J. Confining iron carbide nanocrystals inside CNx@CNT toward an efficient electrocatalyst for oxygen reduction reaction. ACS Appl. Mater. Interfaces, 2015, 7, 11508-11515.
[70]
Cao, T.; Wang, D.; Zhang, J.; Cao, C.; Li, Y. Bamboo-Like nitrogen-doped carbon nanotubes with Co nanoparticles encapsulated at the tips: Uniform and large-scale synthesis and high-performance electrocatalysts for oxygen reduction. Chemistry Eur. J, 2015, 21, 14022-14029.
[71]
Hao, Y.; Lu, Z.; Zhang, G.; Chang, Z.; Luo, L.; Sun, X. Cobalt-embedded nitrogen doped carbon nanotubes as high performance bifunctional oxygen catalysts. Energy Technol. , 2017, 5, 1265-1271.
[72]
Zhao, P.; Xu, W.; Hua, X.; Luo, W.; Chen, S.; Cheng, G. Facile synthesis of a N-doped Fe3C@CNT/porous carbon hybrid for an advanced oxygen reduction and water oxidation electrocatalyst. J. Phys. Chem. C, 2016, 120, 11006-11013.
[73]
Liu, Y.; Jiang, H.; Zhu, Y.; Yang, X.; Li, C. Transition metals (Fe, Co, and Ni) encapsulated in nitrogen-doped carbon nanotubes as bifunctional catalysts for oxygen electrode reactions. J. Mater. Chem. A , 2016, 4, 1694-1701.
[74]
Wei, C.; Wang, H.; Eid, K.; Kim, J.; Kim, J.; Alothmon, Z.A.; Yamauchi, Y.; Wang, L. A three-dimensionally structured electrocatalyst: Cobalt-embedded nitrogen-doped carbon nanotubes/nitrogen-doped reduced graphene oxide hybrid for efficient oxygen reduction. Chemistry, 2017, 23, 637-643.
[75]
Jia, J.; Yang, H.; Wang, G.; Huang, P.; Cai, P.; Wen, Z. Fe/Fe3C nanoparticles embedded in nitrogen-doped carbon nanotubes as multifunctional electrocatalysts for oxygen ctalysis and CO2 reduction. ChemElectroChem, 2018, 5, 471-477.
[76]
Song, A.; Cao, L.; Yang, W.; Yang, W.; Wang, L.; Ma, Z.; Shao, G. In situ construction of nitrogen-doped graphene with surface-grown carbon nanotubes as a multifactorial synergistic catalyst for oxygen reduction. Carbon, 2019, 142, 40-50.