[1]
Gin, H.; Rigalleau, V. Post-prandial hyperglycemia. Post-prandial hyperglycemia and diabetes. Diabetes Metab., 2000, 26(4), 265-272.
[2]
Chou, K.C. Molecular therapeutic target for type-2 diabetes. J. Proteome Res., 2004, 3(6), 1284-1288.
[3]
Puranik, N.V.; Puntambekar, H.M.; Srivastava, P. Antidiabetic potential and enzyme kinetics of benzothiazole derivatives and their non-bonded interactions with alpha-glucosidase and alpha-amylase. Med. Chem. Res., 2016, 25(4), 805-816.
[4]
Liu, X.Y.; Wang, R.L.; Xu, W.R.; Tang, L.D.; Wang, S.Q.; Chou, K.C. Docking and molecular dynamics simulations of peroxisome proliferator activated receptors interacting with pan agonist sodelglitazar. Protein Pept. Lett., 2011, 18(10), 1021-1027.
[5]
Ma, Y.; Wang, S.Q.; Xu, W.R.; Wang, R.L.; Chou, K.C. Design novel dual agonists for treating type-2 diabetes by targeting peroxisome proliferator-activated receptors with core hopping approach. PLoS One, 2012, 7(6)e38546
[6]
Liu, L.; Ma, Y.; Wang, R.L.; Xu, W.R.; Wang, S.Q.; Chou, K.C. Find novel dual-agonist drugs for treating type 2 diabetes by means of cheminformatics. Drug Des. Devel. Ther., 2013, 7, 279-287.
[7]
Hamdan, I.I.; Afifi, F.; Taha, M.O. In vitro alpha amylase inhibitory effect of some clinically-used drugs. Pharmazie, 2004, 59(10), 799-801.
[8]
Bale, A.T.; Khan, K.M.; Salar, U.; Chigurupati, S.; Fasina, T.; Ali, F. Kanwal; Wadood, A.; Taha, M.; Nanda, S.S.; Ghufran, M.; Perveen, S. Chalcones and bis-chalcones: As potential alpha-amylase inhibitors; synthesis, in vitro screening, and molecular modelling studies. Bioorg. Chem., 2018, 79, 179-189.
[9]
Wickramaratne, M.N.; Punchihewa, J.C.; Wickramaratne, D.B.M. In-vitro alpha amylase inhibitory activity of the leaf extracts of Adenanthera pavonina. BMC. Complem. Altern. M., 2016, 16(1), 466.
[10]
Xiao, X.; Min, J.L.; Wang, P.; Chou, K.C. Predict drug-protein interaction in cellular networking. Curr. Top. Med. Chem., 2013, 13(14), 1707-1712.
[11]
Xiao, X.; Wang, P.; Chou, K.C. Recent progresses in identifying nuclear receptors and their families. Curr. Top. Med. Chem., 2013, 13(10), 1192-1200.
[12]
Fan, Y.N.; Xiao, X.; Min, J.L.; Chou, K.C. iNR-Drug: Predicting the interaction of drugs with nuclear receptors in cellular networking. Int. J. Mol. Sci., 2014, 15(3), 4915-4937.
[13]
Xiao, X.; Min, J.L.; Wang, P.; Chou, K.C. iGPCR-Drug: A web server for predicting interaction between GPCRs and drugs in cellular networking. PLoS One, 2013, 8(8)e72234
[14]
Jia, J.H.; Liu, Z.; Xiao, X.; Liu, B.X.; Chou, K.C. iCar-PseCp: Identify carbonylation sites in proteins by Monto Carlo sampling and incorporating sequence coupled effects into general PseAAC. Oncotarget, 2016, 7(23), 34558-34570.
[15]
Janecek, S.; Svensson, B.; MacGregor, E.A. Alpha-Amylase: An enzyme specificity found in various families of glycoside hydrolases. Cell. Mol. Life Sci., 2014, 71(7), 1149-1170.
[16]
Nielsen, J.E.; Borchert, T.V. Protein engineering of bacterial alpha-amylases. BBA. Protein Struct. M., 2000, 1543(2), 253-274.
[17]
Janecek, S. Alpha-amylase family: Molecular biology and evolution. Prog. Biophys. Mol. Biol., 1997, 67(1), 67-97.
[18]
Miura, T.; Suzuki, K.; Kohata, N.; Takeuchi, H. Metal binding modes of Alzheimer’s amyloid beta-peptide in insoluble aggregates and soluble complexes. Biochemistry, 2000, 39(23), 7024-7031.
[19]
Navarra, G.; Tinti, A.; Di Foggia, M.; Leone, M.; Militello, V.; Torreggiani, A. Metal ions modulate thermal aggregation of beta-lactoglobulin: A joint chemical and physical characterization. J. Inorg. Biochem., 2014, 137, 64-73.
[20]
Boopathi, S.; Kolandaivel, P. Fe2+ binding on amyloid -peptide promotes aggregation. Proteins, 2016, 84(9), 1257-1274.
[21]
Gerber, H.; Wu, F.; Dimitrov, M.; Osuna, G.M.G.; Fraering, P.C. Zinc and copper differentially modulate Amyloid precursor protein processing by -Secretase and Amyloid- peptide production. J. Biol. Chem., 2017, 292(9), 3751-3767.
[22]
Dey, G.; Palit, S.; Banerjee, R.; Maiti, B.R. Purification and characterization of maltooligosaccharide-forming amylase from Bacillus circulans GRS 313. J. Ind. Microbiol. Biotechnol., 2002, 28(4), 193-200.
[23]
Zohra, R.R.; Ul-Qader, S.A.; Pervez, S.; Aman, A. Influence of different metals on the activation and inhibition of alpha-amylase from thermophilic Bacillus firmus KIBGE-IB28. Pak. J. Pharm. Sci., 2016, 29(4), 1275-1278.
[24]
Donadio, G.; Di Martino, R.; Oliva, R.; Petraccone, L.; Del Vecchio, P.; Di Luccia, B.; Ricca, E.; Isticato, R.; Di Donato, A.; Notomista, E. A new peptide-based fluorescent probe selective for zinc(II) and copper(II). J. Mater. Chem. B, 2016, 4(43), 6979-6988.
[25]
Shah, R.; Chou, T.F.; Maize, K.M.; Strom, A.; Finzel, B.C.; Wagner, C.R. Inhibition by divalent metal ions of human histidine triad nucleotide binding proteinl (hHint1), a regulator of opioid analgesia and neuropathic pain. Biochem. Biophys. Res. Commun., 2017, 491(3), 760-766.
[26]
Dudev, T.; Lin, Y.L.; Dudev, M.; Lim, C. First-second shell interactions in metal binding sites in proteins: A PDB survey and DFT/CDM calculations. J. Am. Chem. Soc., 2003, 125(10), 3168-3180.
[27]
Laitaoja, M.; Valjakka, J.; Janis, J. Zinc coordination spheres in protein structures. Inorg. Chem., 2013, 52(19), 10983-10991.
[28]
De La Rosa, V.; Bennett, A.L.; Ramsey, I.S. Coupling between an electrostatic network and the Zn2+ binding site modulates Hv1 activation. J. Gen. Physiol., 2018, 150(6), 863-881.
[29]
Hecel, A.; Watly, J.; Rowinska-Zyrek, M.; Swiatek-Kozlowska, J.; Kozlowski, H. Histidine tracts in human transcription factors: Insight into metal ion coordination ability. J. Biol. Inorg. Chem., 2018, 23(1), 81-90.
[30]
Liao, S.M.; Sun, L.; Wang, Q.Y.; Shen, N.K.; Zhu, J.; Huang, G.Y.; Huang, J.M.; Chen, D.; Huang, R.B. Screening of thermostable α-amylase producing strain and cloning, expression and characterization of the gene AmyGX. Guangxi. Sci., 2017, 1, 92-99.
[31]
Greenfield, N.J. Using circular dichroism collected as a function of temperature to determine the thermodynamics of protein unfolding and binding interactions. Nat. Protoc., 2006, 1(6), 2527-2535.
[32]
Ahmed, A.; Villinger, S.; Gohlke, H. Large-scale comparison of protein essential dynamics from molecular dynamics simulations and coarse-grained normal mode analyses. Proteins, 2010, 78(16), 3341-3352.
[33]
Adcock, S.A.; McCammon, J.A. Molecular dynamics: Survey of methods for simulating the activity of proteins. Chem. Rev., 2006, 106(5), 1589-1615.
[34]
Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 1976, 72(1-2), 248-254.
[35]
Nazmi, A.R.; Remisch, T.; Hinz, H-J. Ca-binding to Bacillus licheniformis alpha-amylase (BLA). Arch. Biochem. Biophys., 2006, 453(1), 18-25.
[36]
Whitmore, L.; Wallace, B.A. DICHROWEB, an online server for protein secondary structure analyses from circular dichroism spectroscopic data. Nucleic Acids Res., 2004, 32, 668-673.
[37]
Altschul, S.F.; Madden, T.L.; Schaffer, A.A.; Zhang, J.H.; Zhang, Z.; Miller, W.; Lipman, D.J. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res., 1997, 25(17), 3389-3402.
[38]
Chai, K.P.; Othman, N.F.B.; Teh, A-H.; Ho, K.L.; Chan, K-G.; Shamsir, M.S.; Goh, K.M.; Ng, C.L. Crystal structure of Anoxybacillus alpha-amylase provides insights into maltose binding of a new glycosyl hydrolase subclass. Sci. Rep-Uk., 2016, 6, 23126.
[39]
Sali, A.; Potterton, L.; Yuan, F.; van Vlijmen, H.; Karplus, M. Evaluation of comparative protein modeling by MODELLER. Proteins, 1995, 23(3), 318-326.
[40]
Shen, M-Y.; Sali, A. Statistical potential for assessment and prediction of protein structures. Protein Sci., 2006, 15(11), 2507-2524.
[41]
Lovell, S.C.; Davis, I.W.; Adrendall, W.B.; de Bakker, P.I.W.; Word, J.M.; Prisant, M.G.; Richardson, J.S.; Richardson, D.C. Structure validation by C alpha geometry: Phi, psi and C beta deviation. Proteins, 2003, 50(3), 437-450.
[42]
Eisenberg, D.; Luthy, R.; Bowie, J.U. VERIFY3D: Assessment of protein models with three-dimensional profiles. In Macromolecular Crystallography, , Pt B, Carter, C.W.; Sweet, R.M., Eds.,. 1997, 277, 396-404.
[43]
Molecular Operating Environment (MOE); 2013. 08; Chemical Computing Group: Montreal, QC, Canada, . , 2013.
[44]
Gordon, J.C.; Myers, J.B.; Folta, T.; Shoja, V.; Heath, L.S.; Onufriev, A.H. ++: A server for estimating pK(a)s and adding missing hydrogens to macromolecules. Nucleic Acids Res., 2005, 33, 368-371.
[45]
AMBER, 14; University of California: San Francisco, USA, 2014.
[46]
Jorgensen, W.L.; Chandrasekhar, J.; Madura, J.D.; Impey, R.W.; Klein, M.L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys., 1983, 79(2), 926-935.
[47]
Cornell, W.D.; Cieplak, P.; Bayly, C.I.; Gould, I.R.; Merz, K.M.; Ferguson, D.M.; Spellmeyer, D.C.; Fox, T.; Caldwell, J.W.; Kollman, P.A. A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J. Am. Chem. Soc., 1996, 118(9), 2309-2309.
[48]
Hornak, V.; Abel, R.; Okur, A.; Strockbine, B.; Roitberg, A.; Simmerling, C. Comparison of multiple amber force fields and development of improved protein backbone parameters. Proteins, 2006, 65(3), 712-725.
[49]
Svozil, D.; Sponer, J.E.; Marchan, I.; Perez, A.; Cheatham, T.E.; Forti, F.; Luque, F.J.; Orozco, M.; Sponer, J. Geometrical and electronic structure variability of the sugar-phosphate backbone in nucleic acids. J. Phys. Chem. B, 2008, 112(27), 8188-8197.
[50]
Ryckaert, J-P.; Ciccotti, G.; Berendsen, H.J. Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J. Comput. Phys., 1977, 23(3), 327-341.
[51]
Pastor, R.W.; Brooks, B.R.; Szabo, A. An analysis of the accuracy of Langevin and molecular dynamics algorithms. Mol. Phys., 1988, 65(6), 1409-1419.
[52]
Durrant, J.D.; de Oliveira, C.A.F.; McCammon, J.A. POVME: An algorithm for measuring binding-pocket volumes. J. Mol. Graph. Model., 2011, 29(5), 773-776.
[53]
Wagner, J.R.; Sorensen, J.; Hensley, N.; Wong, C.; Zhu, C.; Perison, T.; Amaro, R.E. POVME 3.0: Software for mapping binding pocket flexibility. J. Chem. Theory Comput., 2017, 13(9), 4584-4592.
[54]
Beychok, S. Circular dichroism of biological macromolecules. Science, 1966, 154(3754), 1288-1299.
[55]
Kelly, S.M.; Jess, T.J.; Price, N.C. How to study proteins by circular dichroism. BBA. Proteins Proteom., 2005, 1751(2), 119-139.
[56]
Zhou, R.; Liu, H.; Hou, G.; Ju, L.; Liu, C. Multi-spectral and thermodynamic analysis of the interaction mechanism between Cu2+ and alpha-amylase and impact on sludge hydrolysis. Environ. Sci. Pollut. R., 2017, 24(10), 9428-9436.
[57]
Ponnusamy, S.; Haldar, S.; Mulani, F.; Zinjarde, S.; Thulasiram, H. RaviKumar, A. Gedunin and Azadiradione: Human pancreatic alpha-amylase inhibiting limonoids from Neem (Azadirachta indica) as anti-diabetic agents. PLoS One, 2015, 10(10)e0140113
[58]
Chou, K.C.; Jones, D.; Heinrikson, R.L. Prediction of the tertiary structure and substrate binding site of caspase-8. FEBS Lett., 1997, 419(1), 49-54.
[59]
Chou, K.C.; Tomasselli, A.G.; Heinrikson, R.L. Prediction of the Tertiary Structure of a Caspase-9/Inhibitor Complex. FEBS Lett., 2000, 470, 249-256.
[60]
Chou, K.C.; Howe, W.J. Prediction of the tertiary structure of the beta-secretase zymogen. Biochem. Biophys. Res. Commun., 2002, 292(3), 702-708.
[61]
Chou, K.C.; Howe, W.J. Prediction of the tertiary structure of the beta-secretase zymogen. Biochem. Biophys. Res. Commun., 2002, 292, 702-708.
[62]
Chou, K.C. Modelling extracellular domains of GABA-A receptors: subtypes 1, 2, 3, and 5. Biochem. Biophys. Res. Commun., 2004, 316, 636-642.
[63]
Chou, K.C. Insights from modelling three-dimensional structures of the human potassium and sodium channels. J. Proteome Res., 2004, 3, 856-861.
[64]
Chou, K.C. Insights from modelling the tertiary structure of BACE2. J. Proteome Res., 2004, 3, 1069-1072.
[65]
Chou, K.C. Insights from modelling the 3D structure of the extracellular domain of alpha7 nicotinic acetylcholine receptor. Biochem. Biophys. Res. Commun., 2004, 319, 433-438.
[66]
Chou, K.C. Modeling the tertiary structure of human cathepsin-E. Biochem. Biophys. Res. Commun., 2005, 331, 56-60.
[67]
Chou, K.C. Insights from modeling the 3D structure of DNA-CBF3b complex. J. Proteome Res., 2005, 4, 1657-1660.
[68]
Chou, K.C. Coupling interaction between thromboxane A2 receptor and alpha-13 subunit of guanine nucleotide-binding protein. J. Proteome Res., 2005, 4, 1681-1686.
[69]
Huang, R.B.; Cheng, D.; Lu, B.; Liao, S.M.; Troy, F.A.; Zhou, G.P. The intrinsic relationship between structure and function of the sialyltransferase ST8Sia family members. Curr. Top. Med. Chem., 2017, 17, 2359-2369.
[70]
Zhou, G.P. Impacts of biological science to medicinal chemistry. Curr. Top. Med. Chem., 2017, 17, 2335-2336.
[71]
Zhou, G.P.; Zhong, W.Z. Perspectives in the medicinal chemistry. Curr. Top. Med. Chem., 2016, 16, 381-382.
[72]
Zhou, G.P. Editorial, special issue: Modulations and their biological functions of protein-biomolecule interactions. Curr. Top. Med. Chem., 2016, 16, 579-580.
[73]
Zhou, G.P.; Chen, D.; Liao, S.M.; Huang, R.B. Recent progresses in studying helix-helix interactions in proteins by incorporating the Wenxiang diagram into the NMR spectroscopy. Curr. Top. Med. Chem., 2016, 16, 581-590.
[74]
Zhou, G.P. Editorial, special issue: Current progress in structural bioinformatics of protein-biomolecule interactions. Med. Chem., 2015, 11(3), 216-217.
[75]
Zhou, G.P.; Huang, R.B.; Troy, F.A. 3D Structural conformation and functional domains of polysialyltransferase ST8Sia IV required for polysialylation of neural cell adhesion molecules. Protein Pept. Lett., 2015, 22, 137-148.
[76]
Chou, K.C.; Chou, N.Y. The biological functions of low-frequency phonons. Sci. Sin., 1977, 20(4), 447-457.
[77]
Chou, K.; Chen, N.; Forsen, S. The biological functions of low-frequency phonons. 2. Cooperative effects. Chem. Scr., 1981, 18(3), 126-132.
[78]
Chou, K.C. Low-frequency vibrations of helical structures in protein molecules. Biochem. J., 1983, 209(3), 573-580.
[79]
Chou, K.C. The biological functions of low-frequency vibrations (phonons): 4. Resonance effects and allosteric transition. Biophys. Chem., 1984, 20(1-2), 61-71.
[80]
Chou, K.C. Low-frequency motions in protein molecules. Beta-sheet and beta-barrel. Biophys. J., 1985, 48(2), 289-297.
[81]
Zhou, G.P. Biological functions of soliton and extra electron motion in DNA structure. Phys. Scr., 1989, 40(5), 698.
[82]
Chou, K.C. Low-frequency collective motion in biomacromolecules and its biological functions. Biophys. Chem., 1988, 30(1), 3-48.
[83]
Martel, P. Biophysical aspects of neutron scattering from vibrational modes of proteins. Prog. Biophys. Mol. Biol., 1992, 57(3), 129-179.
[84]
Wang, J.F.; Gong, K.; Wei, D.Q.; Li, Y.X.; Chou, K.C. Molecular dynamics studies on the interactions of PTP1B with inhibitors: From the first phosphate-binding site to the second one. Protein Eng. Des. Sel., 2009, 22(6), 349-355.
[85]
Chou, K.C. Low-frequency resonance and cooperativity of hemoglobin. Trends Biochem. Sci., 1989, 14(6), 212.
[86]
Chou, K.C.; Mao, B. Collective motion in DNA and its role in drug intercalation. Biopolymers, 1988, 27(11), 1795-1815.
[87]
Chou, K.C.; Zhang, C.T.; Maggiora, G.M. Solitary wave dynamics as a mechanism for explaining for explaining the internal motion during microtubule growth. Biopolymers, 1994, 34(1), 143-153.
[88]
Gordon, G.A. Designed electromagnetic pulsed therapy: Clinical applications. J. Cell. Physiol., 2007, 212(3), 579-582.
[89]
Abhilash, J.; Haridas, M. Metal ion coordination essential for specific molecular interactions of Butea monosperma Lectin: ITC and MD simulation studies. Appl. Biochem. Biotechnol., 2015, 176(1), 277-286.
[90]
Ishikawa, K.; Matsui, I.; Honda, K.; Nakatani, H. Multifunctional of a histidine residue in human pancreatic alpha-amylase. Biochem. Biophys. Res. Commun., 1992, 183(1), 286-291.
[91]
Ishikawa, K.; Matsui, I.; Kobayashi, S.; Nakatani, H.; Honda, K. Substrate recognition at the binding -site in mammalian pancreatic alpha-amylases. Biochemistry-Us., 1993, 32(24), 6259-6265.
[92]
Sogaard, M.; Abe, J.; Martineauclaire, M.F.; Svensson, B. Alpha-amylases-structure and function. Carbohydr. Polym., 1993, 21(2-3), 137-146.
[93]
Vihinen, M.; Ollikka, P.; Niskanen, J.; Meyer, P.; Suominen, I.; Karp, M.; Holm, L.; Knowles, J.; Mantsala, P. Site-directed mutagenesis of a thermostable alpha-amylase from bacillus-stearothermophilus-putative role of 3 conserved residues. J. Biochem., 1990, 107(2), 267-272.
[94]
Uchida, K. Histidine and lysine as targets of oxidative modification. Amino Acids, 2003, 25(3-4), 249-257.
[95]
Li, F.; Fitz, D.; Fraser, D.G.; Rode, B.M. Catalytic effects of histidine enantiomers and glycine on the formation of dileucine and dimethionine in the salt-induced peptide formation reaction. Amino Acids, 2010, 38(1), 287-294.
[96]
Liao, S.M.; Du, Q.S.; Meng, J.Z.; Pang, Z.W.; Huang, R.B. The multiple roles of histidine in protein interactions. Chem. Cent. J., 2013, 7(1), 44.
[97]
Manas, N.H.A.; Abu Bakar, F.D.; Illias, R.M. Computational docking, molecular dynamics simulation and subsite structure analysis of a maltogenic amylase from Bacillus lehensis G1 provide insights into substrate and product specificity. J. Mol. Graph. Model., 2016, 67, 1-13.
[98]
Matsui, I.; Yoneda, S.; Ishikawa, K.; Miyairi, S.; Fukui, S.; Umeyama, H.; Honda, K. Roles of the aromatic residues conderved in the active-center of saccharomycopsis alpha-amylase for transglycosylation and hydrolysis activity. Biochemistry-Us., 1994, 33(2), 451-458.
[99]
Arodola, O.A.; Soliman, M.E.S. Molecular dynamics simulations of ligand-induced flap conformational changes in Cathepsin-DA comparative study. J. Cell. Biochem., 2016, 117(11), 2643-2657.
[100]
Kobayashi, M.; Saburi, W.; Nakatsuka, D.; Hondoh, H.; Kato, K.; Okuyama, M.; Mori, H.; Kimura, A.; Yao, M. Structural insights into the catalytic reaction that is involved in the reorientation of Trp238 at the substrate-binding site in GH13 dextran glucosidase. FEBS Lett., 2015, 589(4), 484-489.
[101]
Chou, K.C.; Shen, H.B. Recent advances in developing web-servers for predicting protein attributes. Nat. Sci., 2009, 1, 63-92.
[102]
Chen, W.; Feng, P.M.; Lin, H. iSS-PseDNC: Identifying splicing sites using pseudo dinucleotide composition. BioMed Res. Int., 2014, 2014623149
[103]
Feng, P.M.; Chen, W.; Lin, H. iHSP-PseRAAAC: Identifying the heat shock protein families using pseudo reduced amino acid alphabet composition. Anal. Biochem., 2013, 442, 118-125.
[104]
Chen, W.; Ding, H.; Feng, P.; Lin, H. iACP: A sequence-based tool for identifying anticancer peptides. Oncotarget, 2016, 7, 16895-16909.
[105]
Cheng, X.; Xiao, X.; Chou, K.C. pLoc-mPlant: Predict subcellular localization of multi-location plant proteins via incorporating the optimal GO information into general PseAAC. Mol. Biosyst., 2017, 13, 1722-1727.
[106]
Cheng, X.; Xiao, X.; Chou, K.C. pLoc-mVirus: Predict subcellular localization of multi-location virus proteins via incorporating the optimal GO information into general PseAAC. Gene, 2017, 628, 315-321.
[107]
Cheng, X.; Zhao, S.G.; Lin, W.Z.; Xiao, X.; Chou, K.C. pLoc-mAnimal: Predict subcellular localization of animal proteins with both single and multiple sites. Bioinformatics, 2017, 33, 3524-3531.
[108]
Xiao, X.; Cheng, X.; Su, S.; Nao, Q.; Chou, K.C. pLoc-mGpos: Incorporate key gene ontology information into general PseAAC for predicting subcellular localization of Gram-positive bacterial proteins. Nat. Sci., 2017, 9, 331-349.
[109]
Cheng, X.; Xiao, X.; Chou, K.C. pLoc-mEuk: Predict subcellular localization of multi-label eukaryotic proteins by extracting the key GO information into general PseAAC. Genomics, 2018, 110, 50-58.
[110]
Cheng, X.; Xiao, X.; Chou, K.C. pLoc-mGneg: Predict subcellular localization of Gram-negative bacterial proteins by deep gene ontology learning via general PseAAC. Genomics, 2018, 110, 231-239.
[111]
Cheng, X.; Xiao, X.; Chou, K.C. pLoc-mHum: Predict subcellular localization of multi-location human proteins via general PseAAC to winnow out the crucial GO information. Bioinformatics, 2018, 34, 1448-1456.
[112]
Cheng, X.; Lin, W.Z.; Xiao, X.; Chou, K.C. pLoc_bal-mAnimal: Predict subcellular localization of animal proteins by balancing training dataset and PseAAC. Bioinformatics, 2018, 458, 92-102.
[113]
Chou, K.C. Impacts of bioinformatics to medicinal chemistry. Med. Chem., 2015, 11, 218-234.
[114]
Chou, K.C. An unprecedented revolution in medicinal chemistry driven by the progress of biological science. Curr. Top. Med. Chem., 2017, 17, 2337-2358.