[1]
Dougherty, E.R. Optimal Signal Processing Under Uncertainty; SPIE Press: Bellingham, 2018.
[2]
Kauffman, S. Metabolic stability and epigenesis in randomly constructed genetic nets. J. Theor. Biol., 1969, 22(3), 437-467.
[3]
Qian, X.; Dougherty, E.R. Effect of function perturbation on the steady-state distribution of genetic regulatory networks: optimal structural intervention. IEEE Trans. Sig Process., 2008, 56(10), 4966-4975.
[4]
Faure, A.; Naldi, A.; Chaaouiya, A.; Thieffry, D. Dynamical analysis of a generic boolean model for the control of the mammalian cell cycle. Bioinformatics, 2006, 22(14), 124-131.
[5]
Yoon, B.J.; Qian, X.; Dougherty, E.R. Quantifying the objective cost of uncertainty in complex dynamical systems. IEEE Trans. Sig. Process., 2013, 61(9), 2256-2266.
[6]
Qian, X.; Dougherty, E.R. Intervention in gene regulatory networks via phenotypically constrained control policies based on long-run behavior. IEEE/ACM Trans. Comput. Biol. Bioinform, 2012, 9(1), 123-136.
[7]
Dalton, L.A.; Dougherty, E.R. Intrinsically optimal bayesian robust filtering. IEEE Trans. Signal Process., 2014, 62(3), 657-670.
[8]
Yeang, C.H.; Mak, H.C.; McCuine, S.; Workman, C.; Jaakkola, T.; Ideker, T. Validation and refinement of gene-regulatory pathways on a network of physical interactions. Genome Biol., 2005, 6(7), 1974-1979.
[9]
Dehghannasiri, R.; Yoon, B.J.; Dougherty, E.R. Optimal experimental design for gene regulatory networks in the presence of uncertainty. IEEE/ACM Trans. Comput. Biol. Bioinform, 2015, 14(4), 938-950.
[10]
Imani, M.; Dehghannasiri, R.; Braga-Neto, U.; Dougherty, E.R. Sequential experimental design for optimal structural intervention in gene regulatory networks based on the mean objective cost of uncertainty. Cancer Inform., 2018, 17(1176935118790247), 1-10.
[11]
Golub, T.R.; Slonim, D.K.; Tamayo, P.; Huard, C.; Gaasenbeek, M.; Mesirov, J.P.; Coller, H.; Loh, M.L.; Downing, J.R.; Caligiuri, M.A.; Bloomfield, C.D.; Lander, E.S. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science, 1999, 286(5439), 531-537.
[12]
Dalton, L.A.; Dougherty, E.R. Optimal classifiers with minimum expected error within a bayesian framework – Part I: Discrete and gaussian models. Pattern Recognit., 2013, 46(5), 1288-1300.
[13]
Dalton, L.A.; Dougherty, E.R. Optimal classifiers with minimum expected error within a bayesian framework – Part II: Properties and performance analysis. Pattern Recognit., 2013, 46(5), 1301-1314.
[14]
Dougherty, E.R. Small sample issues for microarray-based classification. Comp. Funct. Genom, 2001, 2(1), 28-34.
[15]
Zollanvari, A.; Hua, J.; Dougherty, E.R. Analytic study of performance of linear discriminant analysis in stochastic settings. Pattern Recognit., 2013, 46(11), 3017-3029.
[16]
Broumand, A.; Yoon, B.J.; Esfahani, M.S.; Dougherty, E.R. Discrete optimal bayesian classification with error-conditioned sequential sampling. Pattern Recognit., 2015, 48(11), 3766-3782.
[17]
Knight, J.; Ivanov, I.; Dougherty, E.R. MCMC implementation of the optimal bayesian classifier for non-gaussian models: Model-based rna-seq classification. BMC Bioinform, 2014, 15(1), 401.
[18]
Knight, J.; Ivanov, I.; Chapkin, R.; Dougherty, E.R. Detecting multivariate gene interactions in rna-seq data using optimal bayesian classification. IEEE/ACM Trans. Comput. Biol. Bioinform, 2018, 15(2), 484-493.
[19]
Nagaraja, K.; Braga-Neto, U. Bayesian classification of proteomics biomarkers from selected reaction monitoring data using an approximate bayesian computation-markov chain monte carlo approach. Cancer Inform., 2018, 17(1), 1-7.
[20]
Banerjee, U.; Braga-Neto, U. ABC-MCMC classification of liquid chromatography—mass spectrometry data. Cancer Inform., 2015, 14(S5), 175-182.
[21]
Karbalayghareh, A.; Braga-Neto, U.M.; Dougherty, E.R. Intrinsically bayesian robust classifier for single-cell gene expression time series in gene regulatory networks. BMC Syst. Biol., 2018, 12(Suppl. 3), 23-37.
[22]
Dadaneh, S.Z.; Dougherty, E.R.; Qian, X. Optimal bayesian classification with missing values. IEEE Trans. Sig. Process., 2018, 66(15), 4182-4192.
[23]
Troyanskaya, O.; Cantor, M.; Sherlock, G.; Brown, P.; Hastie, T.; Tibshirani, R.; Botstein, D.; Altman, R.B. Missing value estimation methods for DNA microarrays. Bioinformatics, 2001, 17(6), 520-525.
[24]
Jaynes, E.T. Prior probabilities. IEEE. Trans. Sys. Sci. Cybernet., 1968, 4(3), 227-241.
[25]
Jaynes, E. What is the question? In: Bayesian Statistics; J.M., Bernardo, Ed.; Valencia University Press: Valencia, 1980; Vol. 31, pp. 143-166.
[26]
Jeffreys, H. An invariant form for the prior probability in estimation problems. Proc. R. Soc. A, Math. Astro. Phy. Sci, 1946, 186(1007), pp. 453-461.
[27]
Kashyap, R. Prior probability and uncertainty. IEEE Trans. Inf. Theory, 1971, 17(6), 641-650.
[28]
Zellner, A. Economics and econometrics; Department of Economics, University of Chicago Press: Chicago, 1995.
[29]
Esfahani, M.S.; Knight, J.; Zollanvari, A.; Yoon, B.J.; Dougherty, E.R. Classifier design given an uncertainty class of feature distributions via regularized maximum likelihood and the incorporation of biological pathway knowledge in steady-state phenotype classification. Pattern Recognit., 2013, 46(10), 2783-2797.
[30]
Esfahani, M.S.; Dougherty, E.R. An optimization-based framework for the transformation of incomplete biological knowledge into a probabilistic structure and its application to the utilization of gene/protein signaling pathways in discrete phenotype classification. IEEE/ACM Trans. Comput. Biol. Bioinform, 2015, 12(6), 1304-1321.
[31]
Boluki, S.; Esfahani, M.S.; Qian, X.; Dougherty, E.R. Incorporating biological prior knowledge for Bayesian learning via maximal knowledge-driven information priors. BMC Bioinform, 2017, 18(Suppl. 14), 552.
[32]
Pan, S.J.; Yang, Q. A survey on transfer learning. IEEE Trans. Knowl. Data Eng., 2010, 22(10), 1345-1359.
[33]
Karbalayghareh, A.; Qian, X.; Dougherty, E.R. Optimal Bayesian transfer learning. IEEE Trans. Sig. Process., 2018, 66(14), 3724-3739.
[34]
Qian, X.; Dougherty, E.R. Bayesian regression with network prior: optimal bayesian filtering perspective. IEEE Trans. Sig. Process., 2016, 64(23), 6243-6253.
[35]
Gelman, A.; Carlin, J.; Stern, H.; Rubin, D. Bayesian Data Analysis; Chapman and Hall: Boca Raton, 1995.
[36]
Bernado, J.; Smith, A. Bayesian Theory; Wiley & Sons: Chichester, 2000.
[37]
Bishop, C. Pattern Recognition and Machine Learning; Springer: New York, 2006.
[38]
Hastie, T.; Tibshirani, R.; Friedman, J. The Elements of Statistical Learning: Data Mining, Inference, and Prediction; Springer: New York, 2009.
[39]
Murphy, K. Machine Learning: A Probabilistic Perspective; MIT Press: Cambridge, 2012.
[40]
Silver, E.A. Markovian decision processes with uncertain transition probabilities or rewards. Technical Report; Defense Technical Information Center: Fort Belvoir, VA, 1963.
[41]
Gozzolino, J.M.; Gonzalez-Zubieta, R.; Miller, R.L. Markovian decision processes with uncertain transition probabilities. Technical Report; Defense Technical Information Center: Fort Bevoir, VA, 1965.
[42]
Martin, J.J. Bayesian Decision Problems and Markov Chains; John Wiley & Sons, Inc: New York, 1967.
[43]
Yousefi, M.; Dougherty, E.R. A comparison study of optimal and suboptimal intervention policies for gene regulatory networks in the presence of uncertainty. EURASIP J. Bioinfo. Sys. Biol., 2014, 1(6), 1-13.
[44]
Kuznetsov, V.P. Stable detection when the signal and spectrum of normal noise are inaccurately known. Telecommun. Radio. Eng., 1976, 30/31(9), 58-64.
[45]
Kassam, S.A.; Lim, T.I. Robust wiener filters. J. Franklin Inst., 1977, 304(1), 171-185.
[46]
Poor, H.V. On robust wiener filtering. IEEE Trans. Auto. Control., 1980, 25(3), 531-536.
[47]
Grigoryan, A.M.; Dougherty, E.R. Bayesian robust optimal linear filters. Sig Process, 2001, 81(12), 2503-2521.
[48]
Dehghannasiri, R.; Esfahani, M.S.; Dougherty, E.R. Intrinsically Bayesian robust kalman filter: an innovation process approach. IEEE Trans. Sig Process., 2017, 65(10), 2531-2546.
[49]
Dalton, L.A.; Benalcazar, M.E.; Dougherty, E.R. Optimal clustering under uncertainty. Plos One, 2018, 13(10), e0204627.