Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

The Potential of Fucose-Containing Sulfated Polysaccharides As Scaffolds for Biomedical Applications

Author(s): Cláudia Nunes* and Manuel A. Coimbra

Volume 26, Issue 35, 2019

Page: [6399 - 6411] Pages: 13

DOI: 10.2174/0929867326666181213093718

Price: $65

Abstract

Marine environments have a high quantity and diversity of sulfated polysaccharides. In coastal regions brown algae are the most abundant biomass producers and their cell walls have fucosecontaining sulfated polysaccharides (FCSP), known as fucans and/or fucoidans. These sulfated compounds have been widely researched for their biomedical properties, namely the immunomodulatory, haemostasis, pathogen inhibition, anti-inflammatory capacity, and antitumoral. These activities are probably due to their ability to mimic the carbohydrate moieties of mammalian glycosaminoglycans. Therefore, the FCSP are interesting compounds for application in health-related subjects, mainly for developing scaffolds for delivery systems or tissue regeneration. FCSP showed potential for these applications also due to their ability to form stable 3D structures with other polymers able to entrap therapeutic agents or cell and growth factors, besides their biocompatibility and biodegradability. However, for the clinical use of these biopolymers well-defined reproducible molecules are required in order to accurately establish relationships between structural features and human health applications.

Keywords: Fucans, fucoidans, antitumoral, structural characteristics, delivery devices, tissue engineering.

[1]
Aquino, R.S.; Grativol, C.; Mourão, P.A.S. Rising from the sea: correlations between sulfated polysaccharides and salinity in plants. PLoS One, 2011, 6(4)e18862
[http://dx.doi.org/10.1371/journal.pone.0018862] [PMID: 21552557]
[2]
Berteau, O.; Mulloy, B. Sulfated fucans, fresh perspectives: structures, functions, and biological properties of sulfated fucans and an overview of enzymes active toward this class of polysaccharide. Glycobiology, 2003, 13(6), 29R-40R.
[http://dx.doi.org/10.1093/glycob/cwg058] [PMID: 12626402]
[3]
Cardoso, M.J.; Costa, R.R.; Mano, J.F. Marine origin polysaccharides in drug delivery systems. Mar. Drugs, 2016, 14(2), 34.
[http://dx.doi.org/10.3390/md14020034] [PMID: 26861358]
[4]
Ale, M.T.; Meyer, A.S. Fucoidans from brown seaweeds: an update on structures, extraction techniques and use of enzymes as tools for structural elucidation. RSC Advances, 2013, 3(22), 8131-8141.
[http://dx.doi.org/10.1039/C3RA23373A]
[5]
Deniaud-Bouët, E.; Hardouin, K.; Potin, P.; Kloareg, B.; Hervé, C. A review about brown algal cell walls and fucose-containing sulfated polysaccharides: cell wall context, biomedical properties and key research challenges. Carbohydr. Polym., 2017, 175, 395-408.
[http://dx.doi.org/10.1016/j.carbpol.2017.07.082] [PMID: 28917882]
[6]
Alan, D. McNaught. Glycoscience: Chemistry and Chemical Biology; Fraser-Reid, B.O.; Tatsuta, K.; Thiem, J., Eds.; Springer Berlin Heidelberg: Berlin, Heidelberg,. , 2008, pp. 2727-2838.
[http://dx.doi.org/10.1134/S0006297909110170]
[7]
Yuguchi, Y.; Tran, V.T.T.; Bui, L.M.; Takebe, S.; Suzuki, S.; Nakajima, N.; Kitamura, S.; Thanh, T.T.T. Primary structure, conformation in aqueous solution, and intestinal immunomodulating activity of fucoidan from two brown seaweed species Sargassum crassifolium and Padina australis. Carbohydr. Polym., 2016, 147, 69-78.
[http://dx.doi.org/10.1016/j.carbpol.2016.03.101] [PMID: 27178910]
[8]
Li, B.; Lu, F.; Wei, X.; Zhao, R. Fucoidan: structure and bioactivity. Molecules, 2008, 13(8), 1671-1695.
[http://dx.doi.org/10.3390/molecules13081671] [PMID: 18794778]
[9]
Mourão, P.A.S.; Vilanova, E.; Soares, P.A.G. Unveiling the structure of sulfated fucose-rich polysaccharides via nuclear magnetic resonance spectroscopy. Curr. Opin. Struct. Biol., 2018, 50, 33-41.
[http://dx.doi.org/10.1016/j.sbi.2017.10.011]
[10]
Varki, A.; Cummings, R.D.; Aebi, M.; Packer, N.H.; Seeberger, P.H.; Esko, J.D.; Stanley, P.; Hart, G.; Darvill, A.; Kinoshita, T.; Prestegard, J.J.; Schnaar, R.L.; Freeze, H.H.; Marth, J.D.; Bertozzi, C.R.; Etzler, M.E.; Frank, M.; Vliegenthart, J.F.G.; Lütteke, T.; Perez, S.; Bolton, E.; Rudd, P.; Paulson, J.; Kanehisa, M.; Toukach, P.; Aoki-Kinoshita, K.F.; Dell, A.; Narimatsu, H.; York, W.; Taniguchi, N.; Kornfeld, S. Symbol nomenclature for graphical representations of glycans. Glycobiology, 2015, 25(12), 1323-1324.
[http://dx.doi.org/10.1093/glycob/cwv091] [PMID: 26543186]
[11]
Cunha, L.; Grenha, A. Sulfated seaweed polysaccharides as multifunctional materials in drug delivery applications. Mar. Drugs, 2016, 14(3), 42.
[http://dx.doi.org/10.3390/md14030042] [PMID: 26927134]
[12]
Tako, M. Rheological characteristics of fucoidan isolated from commercially cultured Cladosiphon okamuranus In. Bot. Mar., 2003, 46(5), 461-465.
[http://dx.doi.org/10.1515/BOT.2003.047]
[13]
Cho, M.; Choi, W-S.; You, S. Steady and dynamic shear rheology of fucoidan-buckwheat starch mixtures. Starch, 2009, 61(5), 282-290.
[http://dx.doi.org/10.1002/star.200800083]
[14]
Rioux, L-E.; Turgeon, S.L.; Beaulieu, M. Rheological characterisation of polysaccharides extracted from brown seaweeds. J. Sci. Food Agric., 2007, 87(9), 1630-1638.
[http://dx.doi.org/10.1002/jsfa.2829]
[15]
Ustyuzhanina, N.E.; Bilan, M.I.; Gerbst, A.G.; Ushakova, N.A.; Tsvetkova, E.A.; Dmitrenok, A.S.; Usov, A.I.; Nifantiev, N.E. Anticoagulant and antithrombotic activities of modified xylofucan sulfate from the brown alga Punctaria plantaginea. Carbohydr. Polym., 2016, 136, 826-833.
[http://dx.doi.org/10.1016/j.carbpol.2015.09.102] [PMID: 26572418]
[16]
Mourão, P.A.S. Use of sulfated fucans as anticoagulant and antithrombotic agents: future perspectives. Curr. Pharm. Des., 2004, 10(9), 967-981.
[http://dx.doi.org/10.2174/1381612043452730] [PMID: 15078127]
[17]
Ren, R.; Azuma, Y.; Ojima, T.; Hashimoto, T.; Mizuno, M.; Nishitani, Y.; Yoshida, M.; Azuma, T.; Kanazawa, K. Modulation of platelet aggregation-related eicosanoid production by dietary F-fucoidan from brown alga Laminaria japonica in human subjects. Br. J. Nutr., 2013, 110(5), 880-890.
[http://dx.doi.org/10.1017/S000711451200606X] [PMID: 23374164]
[18]
Juenet, M.; Aid-Launais, R.; Li, B.; Berger, A.; Aerts, J.; Ollivier, V.; Nicoletti, A.; Letourneur, D.; Chauvierre, C. Thrombolytic therapy based on fucoidan-functionalized polymer nanoparticles targeting P-selectin. Biomaterials, 2018, 156, 204-216.
[http://dx.doi.org/10.1016/j.biomaterials.2017.11.047] [PMID: 29216534]
[19]
Fitton, J.H.; Stringer, D.N.; Karpiniec, S.S. Therapies from fucoidan: an update. Mar. Drugs, 2015, 13(9), 5920-5946.
[http://dx.doi.org/10.3390/md13095920] [PMID: 26389927]
[20]
Ferreira, S.S.; Passos, C.P.; Madureira, P.; Vilanova, M.; Coimbra, M.A. Structure-function relationships of immunostimulatory polysaccharides: a review. Carbohydr. Polym., 2015, 132, 378-396.
[http://dx.doi.org/10.1016/j.carbpol.2015.05.079] [PMID: 26256362]
[21]
Antunes, D.; Padrão, A.I.; Maciel, E.; Santinha, D.; Oliveira, P.; Vitorino, R.; Moreira-Gonçalves, D.; Colaço, B.; Pires, M.J.; Nunes, C.; Santos, L.L.; Amado, F.; Duarte, J.A.; Domingues, M.R.; Ferreira, R. Molecular insights into mitochondrial dysfunction in cancer-related muscle wasting. Biochim. Biophys. Acta, 2014, 1841(6), 896-905.
[http://dx.doi.org/10.1016/j.bbalip.2014.03.004] [PMID: 24657703]
[22]
Gazha, A.K.; Zaporozhets, T.S.; Kuznetsova, T.A.; Zvyaguintseva, T.N.; Besednova, N.N. Effect of sulfated polysaccharides from brown algae on apoptosis of human peripheral blood lymphocytes. Bull. Exp. Biol. Med., 2015, 159(5), 617-619.
[http://dx.doi.org/10.1007/s10517-015-3028-0] [PMID: 26459478]
[23]
Sapharikas, E.; Lokajczyk, A.; Fischer, A-M.; Boisson-Vidal, C. Fucoidan stimulates monocyte migration via ERK/p38 signaling pathways and MMP9 secretion. Mar. Drugs, 2015, 13(7), 4156-4170.
[http://dx.doi.org/10.3390/md13074156] [PMID: 26133555]
[24]
Jin, J-O.; Yu, Q. Fucoidan delays apoptosis and induces pro-inflammatory cytokine production in human neutrophils. Int. J. Biol. Macromol., 2015, 73, 65-71.
[http://dx.doi.org/10.1016/j.ijbiomac.2014.10.059] [PMID: 25445688]
[25]
Clément, M-J.; Tissot, B.; Chevolot, L.; Adjadj, E.; Du, Y.; Curmi, P.A.; Daniel, R. NMR characterization and molecular modeling of fucoidan showing the importance of oligosaccharide branching in its anticomplementary activity. Glycobiology, 2010, 20(7), 883-894.
[http://dx.doi.org/10.1093/glycob/cwq046] [PMID: 20356826]
[26]
Alwarsamy, M.; Gooneratne, R.; Ravichandran, R. Effect of fucoidan from Turbinaria conoides on human lung adenocarcinoma epithelial (A549) cells. Carbohydr. Polym., 2016, 152, 207-213.
[http://dx.doi.org/10.1016/j.carbpol.2016.06.112] [PMID: 27516266]
[27]
Anastyuk, S.D.; Shevchenko, N.M.; Usoltseva Menshova, R.V.; Silchenko, A.S.; Zadorozhny, P.A.; Dmitrenok, P.S.; Ermakova, S.P. Structural features and anticancer activity in vitro of fucoidan derivatives from brown alga Saccharina cichorioides. Carbohydr. Polym., 2017, 157, 1503-1510.
[http://dx.doi.org/10.1016/j.carbpol.2016.11.031] [PMID: 27987862]
[28]
Oliveira, C.; Ferreira, A.S.; Novoa-Carballal, R.; Nunes, C.; Pashkuleva, I.; Neves, N.M.; Coimbra, M.A.; Reis, R.L.; Martins, A.; Silva, T.H. The key role of sulfation and branching on fucoidan antitumor Activity. Macromol. Biosci., 2017, 17(5)1600340
[29]
Park, H.S.; Kim, G-Y.; Nam, T-J.; Deuk Kim, N.; Hyun Choi, Y. Antiproliferative activity of fucoidan was associated with the induction of apoptosis and autophagy in AGS human gastric cancer cells. J. Food Sci., 2011, 76(3), T77-T83.
[http://dx.doi.org/10.1111/j.1750-3841.2011.02099.x] [PMID: 21535865]
[30]
Choo, G-S.; Lee, H-N.; Shin, S-A.; Kim, H-J.; Jung, J-Y. Anticancer effect of fucoidan on DU-145 prostate cancer cells through inhibition of PI3K/Akt and MAPK pathway expression. Mar. Drugs, 2016, 14(7)E126
[http://dx.doi.org/10.3390/md14070126] [PMID: 27399727]
[31]
Atashrazm, F.; Lowenthal, R.M.; Woods, G.M.; Holloway, A.F.; Dickinson, J.L. Fucoidan and cancer: a multifunctional molecule with anti-tumor potential. Mar. Drugs, 2015, 13(4), 2327-2346.
[http://dx.doi.org/10.3390/md13042327] [PMID: 25874926]
[32]
Chiang, C-S.; Lin, Y-J.; Lee, R.; Lai, Y-H.; Cheng, H-W.; Hsieh, C-H.; Shyu, W-C.; Chen, S-Y. Combination of fucoidan-based magnetic nanoparticles and immunomodulators enhances tumour-localized immunotherapy. Nat. Nanotechnol., 2018, 13(8), 746-754.
[http://dx.doi.org/10.1038/s41565-018-0146-7] [PMID: 29760523]
[33]
Wang, W.; Chen, H.; Zhang, L.; Qin, Y.; Cong, Q.; Wang, P.; Ding, K. A fucoidan from Nemacystus decipiens disrupts angiogenesis through targeting bone morphogenetic protein 4. Carbohydr. Polym., 2016, 144, 305-314.
[http://dx.doi.org/10.1016/j.carbpol.2016.02.068] [PMID: 27083822]
[34]
Wu, L.; Sun, J.; Su, X.; Yu, Q.; Yu, Q.; Zhang, P. A review about the development of fucoidan in antitumor activity: progress and challenges. Carbohydr. Polym., 2016, 154, 96-111.
[http://dx.doi.org/10.1016/j.carbpol.2016.08.005] [PMID: 27577901]
[35]
Ahmadi, A.; Zorofchian Moghadamtousi, S.; Abubakar, S.; Zandi, K. Antiviral potential of algae polysaccharides isolated from marine sources: a review. BioMed Res. Int., 2015, 2015825203
[http://dx.doi.org/10.1155/2015/825203]
[36]
Marques, J.; Vilanova, E.; Mourão, P.A.S.; Fernàndez-Busquets, X. Marine organism sulfated polysaccharides exhibiting significant antimalarial activity and inhibition of red blood cell invasion by Plasmodium. Sci. Rep., 2016, 6, 24368.
[http://dx.doi.org/10.1038/srep24368] [PMID: 27071342]
[37]
Sharma, G.; Kar, S.; Basu Ball, W.; Ghosh, K.; Das, P.K. The curative effect of fucoidan on visceral leishmaniasis is mediated by activation of MAP kinases through specific protein kinase C isoforms. Cell. Mol. Immunol., 2014, 11(3), 263-274.
[http://dx.doi.org/10.1038/cmi.2013.68] [PMID: 24561457]
[38]
Besednova, N.N.; Zaporozhets, T.S.; Somova, L.M.; Kuznetsova, T.A. Review: prospects for the use of extracts and polysaccharides from marine algae to prevent and treat the diseases caused by Helicobacter pylori. Helicobacter, 2015, 20(2), 89-97.
[http://dx.doi.org/10.1111/hel.12177] [PMID: 25660579]
[39]
Ponce, N.M.A.; Pujol, C.A.; Damonte, E.B.; Flores, M.L.; Stortz, C.A. Fucoidans from the brown seaweed Adenocystis utricularis: extraction methods, antiviral activity and structural studies. Carbohydr. Res., 2003, 338(2), 153-165.
[http://dx.doi.org/10.1016/S0008-6215(02)00403-2] [PMID: 12526839]
[40]
Mandal, P.; Mateu, C.G.; Chattopadhyay, K.; Pujol, C.A.; Damonte, E.B.; Ray, B. Structural features and antiviral activity of sulphated fucans from the brown seaweed Cystoseira indica. Antivir. Chem. Chemother., 2007, 18(3), 153-162.
[http://dx.doi.org/10.1177/095632020701800305] [PMID: 17626599]
[41]
Pomin, V.H. Sulfated glycans in inflammation. Eur. J. Med. Chem., 2015, 92, 353-369.
[http://dx.doi.org/10.1016/j.ejmech.2015.01.002] [PMID: 25576741]
[42]
Cumashi, A.; Ushakova, N.A.; Preobrazhenskaya, M.E.; D’Incecco, A.; Piccoli, A.; Totani, L.; Tinari, N.; Morozevich, G.E.; Berman, A.E.; Bilan, M.I.; Usov, A.I.; Ustyuzhanina, N.E.; Grachev, A.A.; Sanderson, C.J.; Kelly, M.; Rabinovich, G.A.; Iacobelli, S.; Nifantiev, N.E. A comparative study of the anti-inflammatory, anticoagulant, antiangiogenic, and antiadhesive activities of nine different fucoidans from brown seaweeds. Glycobiology, 2007, 17(5), 541-552.
[http://dx.doi.org/10.1093/glycob/cwm014] [PMID: 17296677]
[43]
Zaporozhets, T.; Besednova, N. Prospects for the therapeutic application of sulfated polysaccharides of brown algae in diseases of the cardiovascular system review. Pharm. Biol., 2016, 54(12), 3126-3135.
[http://dx.doi.org/10.1080/13880209.2016.1185444] [PMID: 27252012]
[44]
Chollet, L.; Saboural, P.; Chauvierre, C.; Villemin, J-N.; Letourneur, D.; Chaubet, F. Fucoidans in Nanomedicine. Mar. Drugs, 2016, 14(8), 145.
[http://dx.doi.org/10.3390/md14080145] [PMID: 27483292]
[45]
Sezer, A.D.; Akbuğa, J. The design of biodegradable ofloxacin-based core-shell microspheres: influence of the formulation parameters on in vitro characterization. Pharm. Dev. Technol., 2012, 17(1), 118-124.
[http://dx.doi.org/10.3109/10837450.2010.529145] [PMID: 20977313]
[46]
Huang, Y-C.; Li, R-Y. Preparation and characterization of antioxidant nanoparticles composed of chitosan and fucoidan for antibiotics delivery. Mar. Drugs, 2014, 12(8), 4379-4398.
[http://dx.doi.org/10.3390/md12084379] [PMID: 25089950]
[47]
Oliveira, C.; Neves, N.M.; Reis, R.L.; Martins, A.; Silva, T.H. Gemcitabine delivered by fucoidan/chitosan nanoparticles presents increased toxicity over human breast cancer cells. Nanomedicine (Lond.), 2018, 13(16), 2037-2050.
[http://dx.doi.org/10.2217/nnm-2018-0004] [PMID: 30189774]
[48]
Lee, E.J.; Lim, K-H. Polyelectrolyte complexes of chitosan self-assembled with fucoidan: an optimum condition to prepare their nanoparticles and their characteristics. Korean J. Chem. Eng., 2014, 31(4), 664-675.
[http://dx.doi.org/10.1007/s11814-013-0243-0]
[49]
Huang, Y-C.; Lam, U.I. Chitosan/fucoidan pH sensitive nanoparticles for oral delivery system. J. Chin. Chem. Soc. (Taipei), 2011, 58(6), 779-785.
[http://dx.doi.org/10.1002/jccs.201190121]
[50]
Silva, T.H.; Alves, A.; Popa, E.G.; Reys, L.L.; Gomes, M.E.; Sousa, R.A.; Silva, S.S.; Mano, J.F.; Reis, R.L. Marine algae sulfated polysaccharides for tissue engineering and drug delivery approaches. Biomatter, 2012, 2(4), 278-289.
[http://dx.doi.org/10.4161/biom.22947] [PMID: 23507892]
[51]
Pinheiro, A.C.; Bourbon, A.I.; Cerqueira, M.A.; Maricato, É.; Nunes, C.; Coimbra, M.A.; Vicente, A.A. Chitosan/fucoidan multilayer nanocapsules as a vehicle for controlled release of bioactive compounds. Carbohydr. Polym., 2015, 115, 1-9.
[http://dx.doi.org/10.1016/j.carbpol.2014.07.016] [PMID: 25439860]
[52]
Murakami, K.; Aoki, H.; Nakamura, S.; Nakamura, S.; Takikawa, M.; Hanzawa, M.; Kishimoto, S.; Hattori, H.; Tanaka, Y.; Kiyosawa, T.; Sato, Y.; Ishihara, M. Hydrogel blends of chitin/chitosan, fucoidan and alginate as healing-impaired wound dressings. Biomaterials, 2010, 31(1), 83-90.
[http://dx.doi.org/10.1016/j.biomaterials.2009.09.031] [PMID: 19775748]
[53]
Mmola, M.; Roes-Hill, M.L.; Durrell, K.; Bolton, J.J.; Sibuyi, N.; Meyer, M.E.; Beukes, D.R.; Antunes, E. Enhanced antimicrobial and anticancer activity of silver and gold nanoparticles synthesised using sargassum incisifolium aqueous extracts. Molecules, 2016, 21(12)E1633
[http://dx.doi.org/10.3390/molecules21121633] [PMID: 27918447]
[54]
Suzuki, M.; Bachelet-Violette, L.; Rouzet, F.; Beilvert, A.; Autret, G.; Maire, M.; Menager, C.; Louedec, L.; Choqueux, C.; Saboural, P.; Haddad, O.; Chauvierre, C.; Chaubet, F.; Michel, J-B.; Serfaty, J-M.; Letourneur, D. Ultrasmall superparamagnetic iron oxide nanoparticles coated with fucoidan for molecular MRI of intraluminal thrombus. Nanomedicine (Lond.), 2015, 10(1), 73-87.
[http://dx.doi.org/10.2217/nnm.14.51] [PMID: 24960075]
[55]
Rouzet, F.; Bachelet-Violette, L.; Alsac, J-M.; Suzuki, M.; Meulemans, A.; Louedec, L.; Petiet, A.; Jandrot-Perrus, M.; Chaubet, F.; Michel, J-B.; Le Guludec, D.; Letourneur, D. Radiolabeled fucoidan as a p-selectin targeting agent for in vivo imaging of platelet-rich thrombus and endothelial activation. J. Nucl. Med., 2011, 52(9), 1433-1440.
[http://dx.doi.org/10.2967/jnumed.110.085852] [PMID: 21849401]
[56]
Mahdavi, M.; Ahmad, M.B.; Haron, M.J.; Namvar, F.; Nadi, B.; Rahman, M.Z.; Amin, J. Synthesis, surface modification and characterisation of biocompatible magnetic iron oxide nanoparticles for biomedical applications. Molecules, 2013, 18(7), 7533-7548.
[http://dx.doi.org/10.3390/molecules18077533] [PMID: 23807578]
[57]
Tran, K.N.; Tran, P.H-L.; Van Vo, T.; Tran, T.T-D. 5th International Conference on Biomedical Engineering in Vietnam 2015Toi, V.V.; Lien Phuong, T.H., Eds.; Springer International Publishing: Cham, pp. 71-74.
[58]
Abdollah, M.R.A.; Carter, T.J.; Jones, C.; Kalber, T.L.; Rajkumar, V.; Tolner, B.; Gruettner, C.; Zaw-Thin, M.; Baguña Torres, J.; Ellis, M.; Robson, M.; Pedley, R.B.; Mulholland, P. T M de Rosales, R.; Chester, K.A. Fucoidan prolongs the circulation time of dextran-coated iron oxide nanoparticles. ACS Nano, 2018, 12(2), 1156-1169.
[http://dx.doi.org/10.1021/acsnano.7b06734] [PMID: 29341587]
[59]
Huang, Y-C.; Kuo, T-H. O-carboxymethyl chitosan/fucoidan nanoparticles increase cellular curcumin uptake. Food Hydrocoll., 2016, 53, 261-269.
[http://dx.doi.org/10.1016/j.foodhyd.2015.02.006]
[60]
Elbi, S.; Nimal, T.R.; Rajan, V.K.; Baranwal, G.; Biswas, R.; Jayakumar, R.; Sathianarayanan, S. Fucoidan coated ciprofloxacin loaded chitosan nanoparticles for the treatment of intracellular and biofilm Infections of Salmonella. Colloids Surf. B Biointerfaces, 2017, 160, 40-47.
[http://dx.doi.org/10.1016/j.colsurfb.2017.09.003] [PMID: 28922635]
[61]
Sezer, A.D.; Akbuğa, J. Fucosphere--new microsphere carriers for peptide and protein delivery: preparation and in vitro characterization. J. Microencapsul., 2006, 23(5), 513-522.
[http://dx.doi.org/10.1080/02652040600687563] [PMID: 16980273]
[62]
Liu, Y.; Yao, W.; Wang, S.; Di, G.; Zheng, Q.; Chen, A. Preparation and characterization of fucoidan-chitosan nanospheres by the sonification method. J. Nanosci. Nanotechnol., 2014, 14(5), 3844-3849.
[http://dx.doi.org/10.1166/jnn.2014.8026] [PMID: 24734649]
[63]
Yu, S-H.; Wu, S-J.; Wu, J-Y.; Wen, D-Y.; Mi, F-L. Preparation of fucoidan-shelled and genipin-crosslinked chitosan beads for antibacterial application. Carbohydr. Polym., 2015, 126, 97-107.
[http://dx.doi.org/10.1016/j.carbpol.2015.02.068] [PMID: 25933528]
[64]
Wu, S-J.; Don, T-M.; Lin, C-W.; Mi, F-L. Delivery of berberine using chitosan/fucoidan-taurine conjugate nanoparticles for treatment of defective intestinal epithelial tight junction barrier. Mar. Drugs, 2014, 12(11), 5677-5697.
[http://dx.doi.org/10.3390/md12115677] [PMID: 25421323]
[65]
Yu, S-H.; Tang, D-W.; Hsieh, H-Y.; Wu, W-S.; Lin, B-X.; Chuang, E-Y.; Sung, H-W.; Mi, F-L. Nanoparticle-induced tight-junction opening for the transport of an anti-angiogenic sulfated polysaccharide across Caco-2 cell monolayers. Acta Biomater., 2013, 9(7), 7449-7459.
[http://dx.doi.org/10.1016/j.actbio.2013.04.009] [PMID: 23583645]
[66]
Lin, Y-H.; Lu, K-Y.; Tseng, C-L.; Wu, J-Y.; Chen, C-H.; Mi, F-L. Development of genipin-crosslinked fucoidan/chitosan-N-arginine nanogels for preventing Helicobacter infection. Nanomedicine (Lond.), 2017, 12(12), 1491-1510.
[http://dx.doi.org/10.2217/nnm-2017-0055] [PMID: 28524785]
[67]
Lee, K.W.; Jeong, D.; Na, K. Doxorubicin loading fucoidan acetate nanoparticles for immune and chemotherapy in cancer treatment. Carbohydr. Polym., 2013, 94(2), 850-856.
[http://dx.doi.org/10.1016/j.carbpol.2013.02.018] [PMID: 23544642]
[68]
Lu, K-Y.; Li, R.; Hsu, C-H.; Lin, C-W.; Chou, S-C.; Tsai, M-L.; Mi, F-L. Development of a new type of multifunctional fucoidan-based nanoparticles for anticancer drug delivery. Carbohydr. Polym., 2017, 165, 410-420.
[http://dx.doi.org/10.1016/j.carbpol.2017.02.065] [PMID: 28363567]
[69]
Hwang, P-A.; Lin, X-Z.; Kuo, K-L.; Hsu, F-Y. Fabrication and cytotoxicity of fucoidan-cisplatin nanoparticles for macrophage and tumor cells. Materials (Basel), 2017, 10(3)E291
[http://dx.doi.org/10.3390/ma10030291] [PMID: 28772650]
[70]
Fan, J.; Liu, Y.; Wang, S.; Liu, Y.; Li, S.; Long, R.; Zhang, R.; Kankala, R.K. Synthesis and characterization of innovative poly(lactide-co-glycolide)-(poly-l-ornithine/fucoidan) core-shell nanocarriers by layer-by-layer self-assembly. RSC Advances, 2017, 7(52), 32786-32794.
[http://dx.doi.org/10.1039/C7RA04908K]
[71]
Chen, C-H.; Lin, Y-S.; Wu, S-J.; Mi, F-L. Mutlifunctional nanoparticles prepared from arginine-modified chitosan and thiolated fucoidan for oral delivery of hydrophobic and hydrophilic drugs. Carbohydr. Polym., 2018, 193, 163-172.
[http://dx.doi.org/10.1016/j.carbpol.2018.03.080] [PMID: 29773368]
[72]
O’Brien, F.J. Biomaterials & scaffolds for tissue engineering. Mater. Today, 2011, 14(3), 88-95.
[http://dx.doi.org/10.1016/S1369-7021(11)70058-X]
[73]
Changotade, S.I.T.; Korb, G.; Bassil, J.; Barroukh, B.; Willig, C.; Colliec-Jouault, S.; Durand, P.; Godeau, G.; Senni, K. Potential effects of a low-molecular-weight fucoidan extracted from brown algae on bone biomaterial osteoconductive properties. J. Biomed. Mater. Res. A, 2008, 87(3), 666-675.
[http://dx.doi.org/10.1002/jbm.a.31819] [PMID: 18189302]
[74]
Perumal, R.K.; Perumal, S.; Thangam, R.; Gopinath, A.; Ramadass, S.K.; Madhan, B.; Sivasubramanian, S. Collagen-fucoidan blend film with the potential to induce fibroblast proliferation for regenerative applications. Int. J. Biol. Macromol., 2018, 106, 1032-1040.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.08.111] [PMID: 28843674]
[75]
Han, Y.S.; Lee, J.H.; Jung, J.S.; Noh, H.; Baek, M.J.; Ryu, J.M.; Yoon, Y.M.; Han, H.J.; Lee, S.H. Fucoidan protects mesenchymal stem cells against oxidative stress and enhances vascular regeneration in a murine hindlimb ischemia model. Int. J. Cardiol., 2015, 198, 187-195.
[http://dx.doi.org/10.1016/j.ijcard.2015.06.070] [PMID: 26163916]
[76]
Li, R.; McRae, N.L.; McCulloch, D.R.; Boyd-Moss, M.; Barrow, C.J.; Nisbet, D.R.; Stupka, N.; Williams, R.J. Large and small assembly: combining functional macromolecules with small peptides to control the morphology of skeletal muscle progenitor cells. Biomacromolecules, 2018, 19(3), 825-837.
[http://dx.doi.org/10.1021/acs.biomac.7b01632] [PMID: 29389119]
[77]
Reys, L.L.; Silva, S.S.; Soares da Costa, D.; Oliveira, N.M.; Mano, J.F.; Reis, R.L.; Silva, T.H. Fucoidan hydrogels photo-cross-linked with visible radiation as matrices for cell culture. ACS Biomater. Sci. Eng., 2016, 2(7), 1151-1161.
[http://dx.doi.org/10.1021/acsbiomaterials.6b00180]
[78]
Lu, H-T.; Lu, T-W.; Chen, C-H.; Lu, K-Y.; Mi, F-L. Development of nanocomposite scaffolds based on biomineralization of N,O-carboxymethyl chitosan/fucoidan conjugates for bone tissue engineering. Int. J. Biol. Macromol, 2018. 120(Pt B), 2335-2345.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.08.179] [PMID: 30189280]
[79]
Marinval, N.; Morenc, M.; Labour, M.N.; Samotus, A.; Mzyk, A.; Ollivier, V.; Maire, M.; Jesse, K.; Bassand, K.; Niemiec-Cyganek, A.; Haddad, O.; Jacob, M.P.; Chaubet, F.; Charnaux, N.; Wilczek, P.; Hlawaty, H. Fucoidan/VEGF-based surface modification of decellularized pulmonary heart valve improves the antithrombotic and re-endothelialization potential of bioprostheses. Biomaterials, 2018, 172, 14-29.
[http://dx.doi.org/10.1016/j.biomaterials.2018.01.054] [PMID: 29715592]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy