[1]
Lohr, D.; Van Holde, K.E. Yeast chromatin subunit structure. Science, 1975, 188(4184), 165-166.
[2]
Galas, D.J.; Schmitz, A. DNAse footprinting: A simple method for the detection of protein-DNA binding specificity. Nucleic Acids Res., 1978, 5(9), 3157-3170.
[3]
Maxam, A.M.; Gilbert, W. A new method for sequencing DNA. Proc. Natl. Acad. Sci. USA, 1977, 74(2), 560-564.
[4]
Petri, V.; Brenowitz, M. Quantitative nucleic acids footprinting: Thermodynamic and kinetic approaches. Curr. Opin. Biotechnol., 1997, 8(1), 36-44.
[5]
Wardman, P.; Candeias, L.P. Fenton chemistry: An introduction. Radiat. Res., 1996, 145(5), 523-331.
[6]
Tullius, T.D.; Dombroski, B.A. Iron(II) EDTA used to measure the helical twist along any DNA molecule. Science, 1985, 230(4726), 679-681.
[7]
Tullius, T.D.; Dombroski, B.A. Hydroxyl radical “footprinting”: High-resolution information about DNA-protein contacts and application to lambda repressor and Cro protein. Proc. Natl. Acad. Sci. USA, 1986, 83(15), 5469-5473.
[8]
Tullius, T.D.; Dombroski, B.A.; Churchill, M.E.; Kam, L. Hydroxyl radical footprinting: A high-resolution method for mapping protein-DNA contacts. Methods Enzymol., 1987, 155, 537-558.
[9]
Balasubramanian, B.; Pogozelski, W.K.; Tullius, T.D. DNA strand breaking by the hydroxyl radical is governed by the accessible surface areas of the hydrogen atoms of the DNA backbone. Proc. Natl. Acad. Sci. USA, 1998, 95(17), 9738-9743.
[10]
Latham, J.A.; Cech, T.R. Defining the inside and outside of a catalytic RNA molecule. Science, 1989, 245(4915), 276-282.
[11]
Celander, D.W.; Cech, T.R. Visualizing the higher order folding of a catalytic RNA molecule. Science, 1991, 251(4992), 401-407.
[12]
Takamoto, K.; Das, R.; He, Q.; Doniach, S.; Brenowitz, M.; Herschlag, D.; Chance, M.R. Principles of RNA compaction: Insights from the equilibrium folding pathway of the p4-p6 RNA domain in monovalent cations. J. Mol. Biol., 2004, 343(5), 1195-1206.
[13]
Shcherbakova, I.; Mitra, S.; Beer, R.H.; Brenowitz, M. Fast Fenton footprinting: a laboratory-based method for the time-resolved analysis of DNA, RNA and proteins. Nucleic Acids Res., 2006, 34(6), e48.
[14]
Shcherbakova, I.; Brenowitz, M. Monitoring structural changes in nucleic acids with single residue spatial and millisecond time resolution by quantitative hydroxyl radical footprinting. Nat. Protoc., 2008, 3(2), 288-302.
[15]
Joseph, S.; Weiser, B.; Noller, H.F. Mapping the inside of the ribosome with an RNA helical ruler. Science, 1997, 278(5340), 1093-1098.
[16]
King, P.A.; Jamison, E.; Strahs, D.; Anderson, V.E.; Brenowitz, M. ‘Footprinting’ proteins on DNA with peroxonitrous acid. Nucleic Acids Res., 1993, 21(10), 2473-2478.
[17]
Swisher, J.F.; Su, L.J.; Brenowitz, M.; Anderson, V.E.; Pyle, A.M. Productive Folding to the Native State by a Group II Intron Ribozyme. J. Mol. Biol., 2002, 315(3), 297-310.
[18]
Chaulk, S.G.; MacMillan, A.M. Characterization of the Tetrahymena ribozyme folding pathway using the kinetic footprinting reagent peroxynitrous acid. Biochemistry, 2000, 39(1), 2-8.
[19]
Kim, K.; Rhee, S.G.; Stadtman, E.R. Nonenzymatic cleavage of proteins by reactive oxygen species generated by dithiothreitol and iron. J. Biol. Chem., 1985, 260(29), 15394-15397.
[20]
Rana, T.M.; Meares, C.F. Transfer of oxygen from an artificial protease to peptide carbon during proteolysis. Proc. Natl. Acad. Sci. USA, 1991, 88(23), 10578-10582.
[21]
Heyduk, E.; Heyduk, T. Mapping protein domains involved in macromolecular interactions: A novel protein footprinting approach. Biochemistry, 1994, 33(32), 9643-9450. [published erratum appears in Biochemistry 1995 Nov 21;34(46):15388].
[22]
Baichoo, N.; Heyduk, T. Mapping conformational changes in a protein: Application of a protein footprinting technique to cAMPinduced conformational changes in cAMP receptor protein. Biochemistry, 1997, 36(36), 10830-10836.
[23]
Heyduk, T.; Baichoo, N.; Heyduk, E. Hydroxyl radical footprinting of proteins using metal ion complexes. Met. Ions Biol. Syst., 2001, 38, 255-287.
[24]
Datwyler, S.A.; Meares, C.F. Protein-protein interactions mapped by artificial proteases: where sigma factors bind to RNA polymerase. Trends Biochem. Sci., 2000, 25(9), 408-414.
[25]
Hlavaty, J.J.; Benner, J.S.; Hornstra, L.J.; Schildkraut, I. Identification of the metal-binding sites of restriction endonucleases by Fe2+-mediated oxidative cleavage. Biochemistry, 2000, 39(11), 3097-3105.
[26]
Garrison, W.M.; Jayko, M.E.; Bennett, W. Radiation-induced oxidation of protein in aqueous solution. Radiat. Res., 1962, 16, 483-502.
[27]
Garrison, W.M.; Kland-English, M.; Sokol, H.A.; Jayko, M.E. Radiolytic degradation of the peptide main chain in dilute aqueous solution containing oxygen. J. Phys. Chem., 1970, 74(26), 4506-4509.
[28]
Garrison, W.M. Reaction-mechanisms in the radiolysis of peptides, polypeptides, and Proteins. Chem. Rev., 1987, 87(2), 381-398.
[29]
Liebster, J.; Kopoldová, J. Radiation chemical reactions in aqueous oxygenated and oxygen-free solutions of aliphatic dipeptides and tripeptides. Radiat. Res., 1966, 27(2), 162-173.
[30]
Joshi, A.; Moss, H.; Riesz, P.E.S.R. study of the post-radiolysis growth of spin-trapped radicals in gamma-irradiated aqueous solutions of thymine. Int. J. Radiat. Biol. Relat. Stud. Phys. Chem. Med., 1978, 34(2), 165-176.
[31]
Stadtman, E.R.; Berlett, B.S. Reactive oxygen-mediated protein oxidation in aging and disease. Drug Metab. Rev., 1998, 30(2), 225-243.
[32]
Parker, S.C.; Hansen, L.; Abaan, H.O.; Tullius, T.D.; Margulies, E.H. Local DNA topography correlates with functional noncoding regions of the human genome. Science, 2009, 324(5925), 389-392.
[33]
Jones, C.D.; Schlatterer, J.C.; Brenowitz, M.; Pollack, L. A microfluidic device that generates hydroxyl radicals to probe the solvent accessible surface of nucleic acids. Lab Chip, 2011, 11(20), 3458-3464.
[34]
Goshe, M.B.; Anderson, V.E. Hydroxyl radical-induced hydrogen deuterium exchange in amino acid carbon-hydrogen bonds. Radiat. Res., 1999, 151(1), 50-58.
[35]
Maleknia, S.D.; Brenowitz, M.; Chance, M.R. Millisecond radiolytic modification of peptides by synchrotron X-rays identified by mass spectrometry. Anal. Chem., 1999, 71(18), 3965-3973.
[36]
Takamoto, K.; Chance, M.R. Radiolytic protein footprinting with mass spectrometry to probe the structure of macromolecular complexes. Annu. Rev. Biophys. Biomol. Struct., 2006, 35, 251-276.
[37]
Zhu, Y.; Guo, T.; Park, J.E.; Li, X.; Meng, W.; Datta, A.; Bern, M.; Lim, S.K.; Sze, S.K. Elucidating in vivo structural dynamics in integral membrane protein by hydroxyl radical footprinting. Mol. Cell. Proteomics, 2009, 8(8), 1999-2010.
[38]
Cohn, C.; Borda, M.; Schroonen, M. RNA decomposition by pyrite-induced radicals and possible role of lipids during the emergence of life. Earth Planet. Sci. Lett., 2004, 225, 271-278.
[39]
Cohn, C.A.; Laffers, R.; Simon, S.R.; O’Riordan, T.; Schoonen, M.A. Role of pyrite in formation of hydroxyl radicals in coal: Possible implications for human health. Part. Fibre Toxicol., 2006, 3, 16.
[40]
Cohn, C.A.; Mueller, S.; Wimmer, E.; Leifer, N.; Greenbaum, S.; Strongin, D.R.; Schoonen, M.A. Pyrite-induced hydroxyl radical formation and its effect on nucleic acids. Geochem. Trans., 2006, 7, 3.
[41]
Cohn, C.A.; Laffers, R.; Schoonen, M.A. Using yeast RNA as a probe for generation of hydroxyl radicals by earth materials. Environ. Sci. Technol., 2006, 40(8), 2838-2843.
[42]
Schlatterer, J.C.; Brenowitz, M. Complementing global measures of RNA folding with local reports of backbone solvent accessibility by time resolved hydroxyl radical footprinting. Methods, 2009, 49(2), 142-147.
[43]
Schlatterer, J.C.; Wieder, M.S.; Jones, C.D.; Pollack, L.; Brenowitz, M. Pyrite footprinting of RNA. Biochem. Biophys. Res. Commun., 2012, 425(2), 374-378.
[44]
Leser, M.; Pegan, J.; El Makkaoui, M.; Schlatterer, J.C.; Khine, M.; Law, M.; Brenowitz, M. Protein footprinting by pyrite shrinkwrap laminate. Lab Chip, 2015, 15(7), 1646-1650.
[45]
Puthussery, J.; Seefeld, S.; Berry, N.; Gibbs, M.; Law, M. Colloidal iron pyrite(FeS2) nanocrystal inks for thin-film photovoltaics. JACS, 2011, 133(4), 716-719.
[46]
Nguyen, D.; Taylor, D.; Qian, K.; Norouzi, N.; Rasmussen, J.; Botzet, S.; Lehmann, M.; Halverson, K.; Khine, M. Better shrinkage than Shrinky-Dinks. Lab Chip, 2010, 10(12), 1623-1626.
[47]
Lin, D.Y.; Tanaka, Y.; Iwasaki, M.; Gittis, A.G.; Su, H.P.; Mikami, B.; Okazaki, T.; Honjo, T.; Minato, N.; Garboczi, D.N. The PD-1/PD-L1 complex resembles the antigen-binding Fv domains of antibodies and T cell receptors. Proc. Natl. Acad. Sci. USA, 2008, 105(8), 3011-3016.
[48]
Xu, G.; Chance, M.R. Radiolytic modification of acidic amino acid residues in peptides: Probes for examining protein-protein interactions. Anal. Chem., 2004, 76(5), 1213-1221.
[49]
Xu, G.; Chance, M.R. Radiolytic modification of sulfur-containing amino acid residues in model peptides: fundamental studies for protein footprinting. Anal. Chem., 2005, 77(8), 2437-2449.
[50]
Xu, G.; Kiselar, J.; He, Q.; Chance, M.R. Secondary reactions and strategies to improve quantitative protein footprinting. Anal. Chem., 2005, 77(10), 3029-3037.
[51]
Xu, G.; Takamoto, K.; Chance, M.R. Radiolytic modification of basic amino acid residues in peptides: Probes for examining protein-protein interactions. Anal. Chem., 2003, 75(24), 6995-7007.
[52]
Cotto-Rios, X.M.; Bekes, M.; Chapman, J.; Ueberheide, B.; Huang, T.T. Deubiquitinases as a signaling target of oxidative stress. Cell Reports, 2012, 2(6), 1475-1484.
[53]
Fraczkiewicz, R.; Braun, W. Exact and efficient analytical calculation of the accessible surface areas and their gradients for macromolecules. J. Comput. Chem., 1998, 19(3), 319-333.
[54]
Bern, M.; Kil, Y.J.; Becker, C. Advanced peptide and
protein identification software. Curr. Protoc. Bioinformatics , 2012. Chapter 13, Unit13 20.