Generic placeholder image

Nanoscience & Nanotechnology-Asia

Editor-in-Chief

ISSN (Print): 2210-6812
ISSN (Online): 2210-6820

Mini-Review Article

Metal Nanoparticles from Algae: A Green Approach for the Synthesis, Characterization and their Biological Activity

Author(s): Anju Arya and Tejpal Singh Chundawat*

Volume 10, Issue 3, 2020

Page: [185 - 202] Pages: 18

DOI: 10.2174/2210681209666181212153701

Price: $65

Abstract

In recent time, green synthesis of metal nanoparticles is the latest developing technology and received prodigious interest because it is easy, environmentally pristine, non-fouling, antitoxic, and lowcost approach. Green route of biogenic synthesis of metal nanoparticles via microbes such as bacteria, fungi, virus, yeast and algae has the potential to deliver sustainable and enviro safe protocol. Green synthesized metal nanoparticles are the most optimistic and novel agent for various catalytic and biological activities as antibacterial, antiviral, anticancer etc. without any toxic effects. Here, we reviewed algae-mediated green synthesis of metal and metal oxide nanoparticles and their biological activity. Algae are photoautotrophic, eukaryotic, aquatic, unicellular or multicellular organisms. Algae commonly used for biosynthesis because they grow rapidly, their biomass growth on average ten times faster than higher plants and easy to handle experiments with algal species. Different algal strains such as red, green and brown algae are using for the green synthesis of metal nanoparticles. Algae contain bioactive molecules and secondary metabolites that act as reducing, capping and stabilizing agent for manufacturing in nanoparticles. Biogenically synthesized metal and metal oxide nanoparticles characterized by different techniques such as UV-visible spectroscopy, SEM (scanning electron microscopy), HR-TEM (high-resolution transmission electron microscopy), XRD (X-ray diffraction), TGA (thermogravimetric analysis), DLS (dynamic light scattering) zeta potential and exhibited biological activity. In future, research algal production of metal nanoparticles can be explored by the use of different microalgae and their applications in different areas such as biological activity, catalytic activity in the synthesis of organic compounds, medical diagnose and synthesis of nanocomposite, lipid nanoparticles and antibiofilm.

Keywords: Green synthesis, algae, nanoparticles, metal oxide, biological activity, catalytic activity.

Graphical Abstract

[1]
Lewin, A.R.; Anderson, A.R. Encyclopedia Britinica; Encyclopædia Britannica, Inc.: USA, 2001.
[2]
Kim, S.K. Handbook of marine microalgae: Biotechnology and applied phycology; John Willey & Sons: Chichester, UK, 2011.
[3]
Borowitzka, M.A. High value products from microalgae their development and commercialization. J. Appl. Phycol., 2011, 25, 743-756.
[4]
Leela, A.; Vivekanandan, M. Tapping the unexploited plant resource for the synthesis of silver nanoparticles. Afr. J. Biotechnol., 2008, 7, 3162-3165.
[5]
EI –Nour, K.M.M.; Eftaiha, A.; Al-Reda, A.; Ammar, A.A. Synthesis and applications of silver nanoparticles. Arabian. J. Chem., 2010, 3, 135-140.
[6]
Davis, S.A.; Patel, H.M.; Mayes, E.l.; Mendelson, N.H.; Franco, G.; Mann, S. Brittle bacteria: A biominetic approach to the formation of fibrous composite materials. Chem. Mater., 1998, 10, 2516-2524.
[7]
Sharma, A.; Sharma, S.; Sharma, K.; Chetri, S.P.K.; Vasishtha, A.; Singh, P.; Kumar, R.; Rathi, B.; Agaraued, V. Algae as crucial organisms in advancing nanotechnology. J. Appl. Phycol., 2014, 2014 7392713
[8]
Tyagi, K.P. Production of metal nanoparticles from biological resource. Int. J. Curr. Microbiol. Appl. Sci., 2016, 5, 548-558.
[9]
Kuppusamy, P.; Yusoff, M.M.; Maniem, G.P.; Govindan, N. Biosynthesis of metallic nanoparticles using plant derivatives and their new avenues in pharmacological applications. Saudi Pharm. J., 2014, 24, 473-484.
[10]
Jain, A.; Duvvuri, L.S.; Farah, S.; Beyth, N.; Domb, A.J.; Khan, W. Antimicrobial polymers. Adv. Healthcare. Mater., 2014, 3, 1969-1985.
[11]
Chenousova, S.; Epple, M. Sliver as antibacterial agent: Ion, nanoparticle and metal. Angew. Chem. Int. Ed., 2013, 52, 1636-1653.
[12]
Namvar, F.; Rahmen, H.S.; Mohamad, R.; Azizi, S.; Tahir, P.M.; Chartrand, M.S.; Yeap, S.K. Cytotoxic effects of biosynthesized zinc oxide nanoparticles on marine cell lines. Evid. Based Complement. Altern. Med., 2015, 2015 593014
[13]
Renn, D. Biotechnology and the red seaweed polysaccharide industry: Status, needs and prospects. Trends Biotechnol., 1977, 15, 9-4.
[14]
Kannan, R.R.R.; Strik, W.A.; Staden, J.V. Synthesis of silver nanoparticles using the seaweed Codium capitatum P.C, Silva (Chlorophyceae). S. Afr. J. Sci. Bot., 2013, 86, 1-4.
[15]
Venkatesan, V.; Kim, S.K.V.; Shim, M.S. Antimicrobial, antioxidant and anticancer activities of biosynthesized silver nanoparticles using marine alga Ecklonia cava. Nanomaterial, 2016, 6, 235.
[16]
Mittal, A.K.; Chisti, Y.; Banerjee, U.C. Synthesis of metallic nanoparticles using plant extracts. Biotechnol. Adv., 2013, 31, 346-356.
[17]
Vijayan, S.R.; Santhiyagu, P.; Ramaseny, R.; Arivalasagan, P.; Kumar, G.; Ethiraj, K. Seaweeds: A resource for marine bionanotechnology. Enzyme Microb. Technol., 2016, 95, 45-57.
[18]
Sotirious, G.; Pratsinis, S.E. Engineering nanosilver as antibacterial, biosensor and bioimaging material. Curr. Opin. Chem. Eng., 2011, 1, 3-10.
[19]
Srikar, S.K.; Giri, D.D.; Pal, D.B.; Kumar, P.; Upadhyay, S.N. Green synthesis of silver nanoparticles: A review. Green Sustainable Chem., 2016, 6, 34-56.
[20]
Merin, D.D.; Prakash, S.; Bhimba, B.V. Antibacterial Screening of silver nanoparticles synthesized by marine micor algae. Asian Pac. J. Trop. Med., 2010, 3, 797-799.
[21]
Sudha, S.S.; Rajamanickam, K.; Rengaramanujam, Microalgae mediated synthesis of silver nanoparticles and their antibacterial activity against pathogenic bacteria. Indian J. Exp. Biol., 2013, 52, 393-399.
[22]
Petal, V.; Birthold, D.; Puranik, P.; Ganter, M. Screening of cyanobacteria and microalgae for their ability to synthesized silver nanoparticles with antibacterial activity. Biotechnol. Report., 2014, 5, 112-119.
[23]
Sonkar, A.S. Richa, Pathak, J.; Rajneesh, Kannaujiya, V.K.; Sinha, R.P. Characterization and in vitro antitumor, antibacterial and antifungal activities of green synthesized silver nanoparticles using cell extract of Nostoc sp. strain. Can. J. Biotech., 2017, 1, 26-37.
[24]
El-Naggar, N.EI-A.; Hussein, M.H.; EI-Sawah, A.A. Bio-fabrication of silver nanoparticles by phycocyanin, characterization, in vitro anticancer activity against breast cancer cell line and in vivo cytotxicity. Sci. Rep., 2017, 7, 10844.
[25]
Muthusamy, G.; Thangosamy, S.; Raja, M.; Chinnapan, S.; Kandasamy, S. Biosynthesis of silver nanoparticles from Spirulina microalgae and its antibacterial activity. Environ. Sci. Pollut. Res., 2017, 24, 19459-19464.
[26]
Jena, J.; Pradhan, N.; Nayak, R.R.; Dash, B.P.; Sukla, L.B.; Panda, P.K.; Mishra, B.K. Microalgae Scendesmus sp.: A potential low cost green machine for silver nanoparticles synthesis. J. Microbiol. Biotechnol., 2014, 24, 522-533.
[27]
Sinha, S.N.; Paul, D.; Halder, N.; Sengupta, D.; Patra, S.K. Green synthesis of silver noanoparticles using fresh water green algae Pithophora oedogonia (Mont.) wittrock and evaluation of their antibacterial activity. Appl. Nanosci., 2014, 5, 703-709.
[28]
Kathirawan, T.; Sunderamannicka, A.; Shanmgam, N.; Balasubramanan, T. Green Synthesis of silver nanoparticles using marine alga Caulrepa racemosa and their antibacterial activity against some human pathogens. Appl. Nanosci., 2014, 5, 499-544.
[29]
Ahmadi, F.S.; Tanhacin, A.; Pirkohi, M.H. Biosynthesis of silver nanoparticles using Chlamydomonas reinhardtii and its inhibitory effect on growth and virulence of Listeria monocytogenes. Iranian J. Biotechnol., 2015, 14, 163-168.
[30]
Soleimani, M.; Habibi-Pirkoohi, M. Biosynthesis of silver nanoparticles using Chlorella vulgaris and evaluation of the antibacterial efficacy against Staphylococcus aureus Avicenna. J. Medi. Biotechnol., 2016, 9, 120-125.
[31]
Aboelfetoh, E.F. EI-Shenody, Ghobara, M.M. Eco-friendly synthesis of silver nanoparticles using green alga (Caulerpa serrulata): reaction optimization, catalytic and antibacterial activities. Environ. Monit. Assess., 2017, 189, 349.
[32]
RajeshKumar, S.; Kanna, A.C.; Annadurai, G. Green synthesis of silver nanoparticles using marine brown alga Turbinaria conoids and its antibacterial activity. Int. J. Pharm. Bio Sci., 2012, 3, 502-510.
[33]
Jayshree, S.; Thangaraju, N. Biosynthesis and characterization silver nanoparticles using marine macroalgae Sargassum palgiophylllum. Agardh. Pharm. Biomed. Sci., 2015, 5, 705-712.
[34]
Princy, K.F. Manomis, Philip, R.; Gopinath, A. Antibacterial and catalytic efficacy of biosynthesized silver nanoparticles using marine seaweed Padina tetrastromatica. Nano. Biomed. Eng., 2016, 8, 16-23.
[35]
Ibraheem, I.B.M.; Abd-Elaziz, B.E.E.; Zaad, W.F.; Fath, W.A. Green biosynthesis of silver nanoparticles using marine red alga Acanthophora specifera and its antimicrobial activity. J. Nanomed. Nanotechnol., 2016, 7, 1-4.
[36]
De Aragao, A.P. Taiane Maria de oliveira, Quelemes, P.V.; Perfeito, M.L.G.; Araujo, M.C.; Santiago-Jde, A. S.; Cardoso, V.S.; Quaresma, P.; Leite, J.R.; DeSde, A.; Silva, D.A. Green synthesis of silver nanoparticles using the seaweed Gracilaria birdiae and their antibacterial activity. Arabian. J. Chem., 2016, 12(8), 4182-4188.
[37]
Hanan, H.O.; Fatmah, S.B.; Adel, M.E.I-G. Bio potential applications of synthesis nanoparticles as a antimicrobial agents by using Laurencia papillos. Int. J. Pharmacol., 2017, 13, 303-3012.
[38]
Vadlapudi, V.; Amanchy, R. Synthesis, Characterization and antibacterial activity of silver nanoparticles from red algae, Hypnea musciformis. Adv. Bio. Res., 2017, 11, 242-249.
[39]
Shende, S.; Gade, A.; Rai, M. Large scale synthesis and antibacterial activity of fungal derived silver nanoparticles. Environ. Chem. Lett., 2016, 15, 427-434.
[40]
Xie, J.; Lee, J.Y.; Wang, D.I.C.; Ting, Y.P. Identification of active biomolecules in the high-yield synthesis of single-crystalline gold nanoplates in algal solutions. Small, 2007, 2006, 3(4), 672-682.
[41]
Sharma, B.; Purkayastha, D.D.; Hazra, S.; Gogoi, L.; Bhattacharjee, C.R.; Ghosh, N.N.; Rout, J. Biosynthesis of gold nanoparticles using fresh water green alga Prasiola crispa. Mater. Lett., 2013, 116, 94-97.
[42]
Roychoudhary, P.; Pal, R. Spirogyra Submxima – A green alga for nanogold production. J. Algal. Biomass. Utln., 2014, 5, 15-19.
[43]
Rajathi, F.A.A.; Parthiban, C.; Ganesh Kumar, V.; Anantharman, P. Biosynthesis of antibacterial gold nanoparticles using brown alga, Stoechospermum marginatcem (Kutzing). Spectrochim. Acta Mol. Biomol. Spectrosc., 2012, 99, 166-173.
[44]
Rajesh Kumar, S.; Malakodi, C.; Vaneja, M.; Ganajobitha, G.; Paul Kumar, K.; Kanan, C.; Anadurai, G. Antibacterial activity of algae mediated synthesis of gold nanoparticles from Turbinaria conoides. Der. Pharma Chemical., 2013, 5, 224-229.
[45]
Rajesh Kumar, S.; Malarkodi, C.; Gnangobitha, G.; Paulkumar, K.; Kannan, C.; Anadurai, G. Seaweed-mediated synthesis of gold nanoparticles using Turbinaria conoides and its characterization. J. Nanostruct. Chem., 2013, 3, 44.
[46]
Isaac, G.; Renitta, E. Brown algae mediated synthesis, characterization of gold nanoparticles using Padina pavonica and their antibacterial activity against human pathogens. Int. J. Pharm. Tech. Res., 2015, 8, 31-40.
[47]
Ramakrishana, M.; Babu, D.R.; Gengan, R.M.; Chandra, S.; Rao, G.N. Green synthesis of gold nanoparticles using marine algae and evaluation of their catalytic activity. J. Nanostruct. Chem., 2015, 6, 1-13.
[48]
Ashok Kumar, T.; Vijayraghvan, K. Brown seaweed-mediated biosynthesis of gold nanoparticles. J. Env. Biotechnol. Res., 2016, 2, 45-50.
[49]
Abedl-Raouf, N.; Al-Enazi, N.M.; Ibraheem, I.B.M. Green biosynthesis of gold nanoparticles using Galaxaura elongata and characterization of their antibacterial activity. Arab. J. Chem., 2013, 10, 3029-3039.
[50]
Naveena, B.E.; Prakash, S. Biological synthesis of gold nanoparticles using marine alga Gracilaria corticata and its application as a potent antimicrobial and antioxidant agent. Asian J. Pharm. Clin. Res., 2013, 6, 179-182.
[51]
Govindaraju, K.; Basha, S.K.; Kumar, V.G.; Singaravelu, G. Silver, gold and bimetallic nanoparticles production usinfg single cell protein (Spirulina platensis) Geitler. J. Mater. Sci., 2008, 43, 5115-5122.
[52]
Kalabegishivili, T.; Murusidze, I.; Kirkesali, E.; Rehevllshvill, A.; Ginturi, E.; Kuchava, N. Bagdavzen, Gelgautashvili, E.; Forntasyeva, M.V.; Zincovscaia, I.; Favlov, S.S.; Dmitriev, V.A. Gold and silver nanoparticles in Spirulina platensisbio mass for medical application. Ecol. Chem. Eng., 2013, 20, 621-631.
[53]
Brayner, R.; Barberousse, H.; Hemadi, M.; Diedat, C.; Yepremain, C.; Coradin, T.; Fievet, F.; Coute, A. Cyanobacteria as bioreactors for the synthesis of Au, Ag, Pd and Pt nonoparticles via an enzyme-mediated route. J. Nanosci. Nanotechnol., 2007, 7(2), 696-708.
[54]
Castro, L.; Blazquez, M.L.; Munoz, J.A.; Gonzalez, F.; Ballester, A. Biological synthesis of metallic nanoparticles using algae. IET Nanobiotech., 2013, 7, 109-116.
[55]
Saha, S.; Pal, A.; Kundu, S.; Basu, S.; Pal, T. Photochemical green synthesis of calcium-aliginte-stabilized Ag and Au nanoparticles and their catalytic application to 4-nitrophenol reduction. Langmuir, 2009, 26, 2885-2893.
[56]
Momeni, S.; Nabipour, I. A simple green synthesis of palladium nanoparticles with Sargassum alga and their electrocatalytic activities towards hydrogen peroxide. Appl. Biochem. Biotechnol., 2015, 176, 1937-49.
[57]
Arsiya, F.; Sayadi, M.S.; Sobhani, S. Green synthesis of palladium nanoparticles using Chlorella vulgaris. Mater. Lett., 2017, 186(1), 113-115.
[58]
Adams, C.P.; Walker, K.A.; Obare, S.O.; Docherty, K.M. Size dependant antimicrobial effect of noval palladium nanoparticles. PLOS One, 2014, e85981, 1-12.
[59]
Ram Kumar, V.S.; Pugrzhendhi, A.; Prakash, S.; Ahila, N.K.; Vinoj, G.; Selvam, S.; Kumar, G. Synthesis of platinum nanoparticles using seaweed Padina gymnospora and their catalytic activity at PVP/PtNPs nanocomposite towards biological applications. Biomed. Pharmacother., 2017, 92, 479-490.
[60]
Abboud, Y.; Saffaj, T.; Chagraoui, A.; Bouari, A.E.I.; Brouzi, K.; Tanane, O. Biosynthesis, characterization and antimicrobial activity of copper oxide nanoparticles (CONPs) produced using brown alga extract (Bifurcaria bifurcate). Appl. Nanosci., 2013, 4, 371-576.
[61]
Ramaswamy, S.V.P.; Narendhran, S.; Sivaraj, R. Potentiating effect of eco friendly synthesis of copper oxide nanoparticles using brown alga: Antimicrobial and anti-cancer activities. Bull. Meter. Sci., 2016, 39, 361-364.
[62]
EI-Kassas, H.Y.; Okbah, M.A. Phytotoxic effects of seaweed mediated copper nanoparticles against the harmful alga: Lyngbya majuscule. Genet. Eng. Biotechnol. J., 2017, 15, 41-48.
[63]
Makarov, V.V.; Love, A.J.; Sinitsyna, O.V.; Makarova, S.S.; Sky, I.V.; Sky, M.E.; Kalinina, N.O. “Green” nanotechnologies: synthesis of metal nanoparticles using plants. Acta Nature, 2013, 61, 35-44.
[64]
Gultekin, D.D.; Gungor, A.A.; Onem, H.; Babagil, A.; Nadaroglie, H. Synthesis of copper nanoparticles using a different method: Determination of their antioxidant and antimicrobial activity. J. Turk. Chem. Soc., 2016, 3, 623-636.
[65]
Sharmila, G.; Thirumarimurugan, M. Phytofabircation, characterization and antibacterial activity of Cassia auriculata leaf extract derived CuO nanoparticles. J. Inorg. Organomet. Polym. Mater., 2017, 27, 668-673.
[66]
Agarwal, H.; Kumar, S.V.; Kumar, S.R. A review on green synthesis of Zinc oxide nanoparticles – An eco-friendly approach. Res. Effici. Technol., 2017, 3, 406-413.
[67]
Azizi, S.; Ahmad, M.B.; Namvar, F.; Mohamad, R. Green biosynthesis and characterization of Zinc oxide nanoparticles brown marine macro alga Sargassum muticum aqueous extract. Mater. Lett., 2013, 116, 275-277.
[68]
Rao, M.D.; Gautam, P. Synthesis and characterization of ZnO nanoflowers using Chlamydomonas reinhardtii: A green approach. Environ. Prog. Sustain. Eng., 2016, 35, 1020-1026.
[69]
Colak, H.; Karakose, E.; Duman, F. High optoelectronic and antimicrobial performances of green synthesized ZnO nanoparticles using Asculus hippocastanum. Environ. Chem. Lett., 2017, 15, 547-552.
[70]
Mahdvi, M.; Namvar, F.; Ahmad, M.B.; Mohmad, R. Green biosynthesis and characterization of magnetic iron oxide (Fe3O4) nanoparticles using seaweed (Sargassum muticum) aqueous extract. Molecules, 2013, 18, 645-654.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy