Generic placeholder image

Current Stem Cell Research & Therapy

Editor-in-Chief

ISSN (Print): 1574-888X
ISSN (Online): 2212-3946

Review Article

Mini-review: Functions and Action Mechanisms of PQQ in Osteoporosis and Neuro Injury

Author(s): Hao Wen, Yuan He , Ke Zhang, Xiaobin Yang, Dingjun Hao, Yonghong Jiang* and Baorong He*

Volume 15, Issue 1, 2020

Page: [32 - 36] Pages: 5

DOI: 10.2174/1574888X14666181210165539

Price: $65

Abstract

Pyrroloquinoline Quinone (PQQ) is the third coenzyme found after niacinamide and flavone nucleotides and is widely present in microorganisms, plants, animals, and humans. PQQ can stimulate the growth of organisms and is very important for the growth, development and reproduction of animals. Owing to the inherent properties of PQQ as an antioxidant and redox modulator in various systems. In recent years, the role of PQQ in the field of osteoporosis and neuro injury has become a research hotspot. This article mainly discusses the derivatives, distribution of PQQ, in vitro models of osteoporosis and neuro injury, and the research progress of its mechanism of action. It provides new ideas in the study of osteoporosis and neuro injury.

Keywords: Pyrroloquinoline quinone, osteoporosis, neuro injury, homologous proteins, neurovascular protection, grampositive bacteria.

[1]
Kasahara T, Kato T. Nutritional biochemistry: A new redox-cofactor vitamin for mammals. Nature 2003; 422(6934): 832.
[http://dx.doi.org/10.1038/422832a] [PMID: 12712191]
[2]
Stites TE, Mitchell AE, Rucker RB. Physiological importance of quinoenzymes and the O-quinone family of cofactors. J Nutr 2000; 130(4): 719-27.
[http://dx.doi.org/10.1093/jn/130.4.719] [PMID: 10736320]
[3]
Steinberg FM, Gershwin ME, Rucker RB. Dietary pyrroloquinoline quinone: growth and immune response in BALB/c mice. J Nutr 1994; 124(5): 744-53.
[http://dx.doi.org/10.1093/jn/124.5.744] [PMID: 8169668 ]
[4]
Steinberg F, Stites TE, Anderson P, et al. Pyrroloquinoline quinone improves growth and reproductive performance in mice fed chemically defined diets. Exp Biol Med (Maywood) 2003; 228(2): 160-6.
[http://dx.doi.org/10.1177/153537020322800205] [PMID: 12563022]
[5]
Zhang Y, Feustel PJ, Kimelberg HK. Neuroprotection by pyrroloquinoline quinone (PQQ) in reversible middle cerebral artery occlusion in the adult rat. Brain Res 2006; 1094(1): 200-6.
[http://dx.doi.org/10.1016/j.brainres.2006.03.111] [PMID: 16709402]
[6]
Zhang Y, Rosenberg PA. The essential nutrient pyrroloquinoline quinone may act as a neuroprotectant by suppressing peroxynitrite formation. Eur J Neurosci 2002; 16(6): 1015-24.
[http://dx.doi.org/10.1046/j.1460-9568.2002.02169.x] [PMID: 12383230]
[7]
Zhu BQ, Simonis U, Cecchini G, et al. Comparison of pyrroloquinoline quinone and/or metoprolol on myocardial infarct size and mitochondrial damage in a rat model of ischemia/reperfusion injury. J Cardiovasc Pharmacol Ther 2006; 11(2): 119-28.
[http://dx.doi.org/10.1177/1074248406288757] [PMID: 16891289]
[8]
Huang Y, Chen N, Miao D. Radioprotective effects of pyrroloquinoline quinone on parotid glands in C57BL/6J mice. Exp Ther Med 2016; 12(6): 3685-93.
[http://dx.doi.org/10.3892/etm.2016.3843] [PMID: 28105098]
[9]
Shankar BS, Pandey R, Amin P, Misra HS, Sainis KB. Role of glutathione in augmenting the anticancer activity of pyrroloquinoline quinone (PQQ). Redox Rep 2010; 15(4): 146-54.
[http://dx.doi.org/10.1179/174329210X12650506623762] [PMID: 20663290]
[10]
Zhang L, Liu J, Cheng C, et al. The neuroprotective effect of pyrroloquinoline quinone on traumatic brain injury. J Neurotrauma 2012; 29(5): 851-64.
[http://dx.doi.org/10.1089/neu.2011.1882] [PMID: 22040225]
[11]
Wu X, Li J, Zhang H, Wang H, Yin G, Miao D. Pyrroloquinoline quinone prevents testosterone deficiency-induced osteoporosis by stimulating osteoblastic bone formation and inhibiting osteoclastic bone resorption. Am J Transl Res 2017; 9(3): 1230-42.
[PMID: 28386349]
[12]
Kuo YT, Shih PH, Kao SH, Yeh GC, Lee HM. Pyrroloquinoline quinone resists denervation-induced skeletal muscle atrophy by activating PGC-1α and integrating mitochondrial electron transport chain complexes. PLoS One 2015; 10(12)e0143600
[http://dx.doi.org/10.1371/journal.pone.0143600] [PMID: 26646764]
[13]
Yang L, Rong Z, Zeng M, et al. Pyrroloquinoline quinone protects nucleus pulposus cells from hydrogen peroxide-induced apoptosis by inhibiting the mitochondria-mediated pathway. Eur Spine J 2015; 24(8): 1702-10.
[http://dx.doi.org/10.1007/s00586-014-3630-2] [PMID: 25349108]
[14]
Friedman JE, Dobrinskikh E, Alfonso-Garcia A, et al. Pyrroloquinoline quinone prevents developmental programming of microbial dysbiosis and macrophage polarization to attenuate liver fibrosis in offspring of obese mice. Hepatol Commun 2018; 2(3): 313-28.
[http://dx.doi.org/10.1002/hep4.1139] [PMID: 29507905]
[15]
Liu Z, Sun C, Tao R, et al. Pyrroloquinoline quinone decelerates rheumatoid arthritis progression by inhibiting inflammatory responses and joint destruction via modulating NF-κB and MAPK pathways. Inflammation 2016; 39(1): 248-56.
[http://dx.doi.org/10.1007/s10753-015-0245-7] [PMID: 26319019]
[16]
Kumazawa T, Sato K, Seno H, Ishii A, Suzuki O. Levels of pyrroloquinoline quinone in various foods. Biochem J 1995; 307(Pt 2): 331-3.
[http://dx.doi.org/10.1042/bj3070331] [PMID: 7733865 ]
[17]
Duine JA, Frank J Jr. Studies on methanol dehydrogenase from Hyphomicrobium X. Isolation of an oxidized form of the enzyme. Biochem J 1980; 187(1): 213-9.
[http://dx.doi.org/10.1042/bj1870213] [PMID: 6996671]
[18]
Frank J Jr, Dijkstra M, Duine JA, Balny C. Kinetic and spectral studies on the redox forms of methanol dehydrogenase from Hyphomicrobium X. Eur J Biochem 1988; 174(2): 331-8.
[http://dx.doi.org/10.1111/j.1432-1033.1988.tb14102.x] [PMID: 3289922]
[19]
Urakami T, Tanaka A, Yamaguchi K, Tsuji T, Niki E. Synthesis of esters of coenzyme PQQ and IPQ, and stimulation of nerve growth factor production. Biofactors 1995-1996; 5(3): 139-46.
[PMID: 8922270]
[20]
Kong L, Yang C, Yu L, et al. Pyrroloquinoline quinine inhibits RANKL-mediated expression of NFATc1 in part via suppression of c-Fos in mouse bone marrow cells and inhibits wear particle-induced osteolysis in mice. PLoS One 2013; 8(4)e61013
[http://dx.doi.org/10.1371/journal.pone.0061013] [PMID: 23613773]
[21]
Huang Y, Chen N, Miao D. Effect and mechanism of pyrroloquinoline quinone on anti-osteoporosis in Bmi-1 knockout mice-Anti-oxidant effect of pyrroloquinoline quinone. Am J Transl Res 2017; 9(10): 4361-74.
[PMID: 29118900]
[22]
Boyle WJ, Simonet WS, Lacey DL. Osteoclast differentiation and activation. Nature 2003; 423(6937): 337-42.
[http://dx.doi.org/10.1038/nature01658] [PMID: 12748652 ]
[23]
Boyce BF, Xing L. Functions of RANKL/RANK/OPG in bone modeling and remodeling. Arch Biochem Biophys 2008; 473(2): 139-46.
[http://dx.doi.org/10.1016/j.abb.2008.03.018] [PMID: 18395508]
[24]
Gohda J, Akiyama T, Koga T, Takayanagi H, Tanaka S, Inoue J. RANK-mediated amplification of TRAF6 signaling leads to NFATc1 induction during osteoclastogenesis. EMBO J 2005; 24(4): 790-9.
[http://dx.doi.org/10.1038/sj.emboj.7600564] [PMID: 15678102]
[25]
Li X, Hu Y, Jin Z, Jiang H, Wen J. Silica-induced TNF-alpha and TGF-beta1 expression in RAW264.7 cells are dependent on Src-ERK/AP-1 pathways. Toxicol Mech Methods 2009; 19(1): 51-8.
[http://dx.doi.org/10.1080/15376510802354201] [PMID: 19778233]
[26]
Huang H, Chang EJ, Ryu J, Lee ZH, Lee Y, Kim HH. Induction of c-Fos and NFATc1 during RANKL-stimulated osteoclast differentiation is mediated by the p38 signaling pathway. Biochem Biophys Res Commun 2006; 351(1): 99-105.
[http://dx.doi.org/10.1016/j.bbrc.2006.10.011] [PMID: 17052691]
[27]
Wada T, Nakashima T, Hiroshi N, Penninger JM. RANKL-RANK signaling in osteoclastogenesis and bone disease. Trends Mol Med 2006; 12(1): 17-25.
[http://dx.doi.org/10.1016/j.molmed.2005.11.007] [PMID: 16356770]
[28]
Negishi-Koga T, Takayanagi H. Ca2+-NFATc1 signaling is an essential axis of osteoclast differentiation. Immunol Rev 2009; 231(1): 241-56.
[http://dx.doi.org/10.1111/j.1600-065X.2009.00821.x] [PMID: 19754901]
[29]
Grigoriadis AE, Wang ZQ, Cecchini MG, et al. c-Fos: a key regulator of osteoclast-macrophage lineage determination and bone remodeling. Science 1994; 266(5184): 443-8.
[http://dx.doi.org/10.1126/science.7939685] [PMID: 7939685]
[30]
Jette N, Lees-Miller SP. The DNA-dependent protein kinase: A multifunctional protein kinase with roles in DNA double strand break repair and mitosis. Prog Biophys Mol Biol 2015; 117(2-3): 194-205.
[http://dx.doi.org/10.1016/j.pbiomolbio.2014.12.003] [PMID: 25550082]
[31]
Huang Y, Chen N, Miao D. Pyrroloquinoline quinone plays an important role in rescuing Bmi-1-/- mice induced developmental disorders of teeth and mandible--anti-oxidant effect of pyrroloquinoline quinone. Am J Transl Res 2018; 10(1): 40-53.
[PMID: 29422992]
[32]
Misra HS, Khairnar NP, Barik A, Indira Priyadarsini K, Mohan H, Apte SK. Pyrroloquinoline-quinone: A reactive oxygen species scavenger in bacteria. FEBS Lett 2004; 578(1-2): 26-30.
[http://dx.doi.org/10.1016/j.febslet.2004.10.061] [PMID: 15581610]
[33]
Yang S, Madyastha P, Bingel S, Ries W, Key L. A new superoxide-generating oxidase in murine osteoclasts. J Biol Chem 2001; 276(8): 5452-8.
[http://dx.doi.org/10.1074/jbc.M001004200] [PMID: 11098048]
[34]
Sontakke AN, Tare RS. A duality in the roles of reactive oxygen species with respect to bone metabolism. Clin Chim Acta 2002; 318(1-2): 145-8.
[http://dx.doi.org/10.1016/S0009-8981(01)00766-5] [PMID: 11880125]
[35]
Garrett IR, Boyce BF, Oreffo RO, Bonewald L, Poser J, Mundy GR. Oxygen-derived free radicals stimulate osteoclastic bone resorption in rodent bone in vitro and in vivo. J Clin Invest 1990; 85(3): 632-9.
[http://dx.doi.org/10.1172/JCI114485] [PMID: 2312718]
[36]
Zhang HW, Ding J, Jin JL, et al. Defects in mesenchymal stem cell self-renewal and cell fate determination lead to an osteopenic phenotype in Bmi-1 null mice. J Bone Miner Res 2010; 25(3): 640-52.
[http://dx.doi.org/10.1359/jbmr.090812] [PMID: 19653817]
[37]
Odkhuu E, Koide N, Haque A, et al. Inhibition of receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclast formation by pyrroloquinoline quinine (PQQ). Immunol Lett 2012; 142(1-2): 34-40.
[http://dx.doi.org/10.1016/j.imlet.2011.12.001] [PMID: 22193059]
[38]
Hirakawa A, Shimizu K, Fukumitsu H, Furukawa S. Pyrroloquinoline quinone attenuates iNOS gene expression in the injured spinal cord. Biochem Biophys Res Commun 2009; 378(2): 308-12.
[http://dx.doi.org/10.1016/j.bbrc.2008.11.045] [PMID: 19026989]
[39]
Jensen FE, Gardner GJ, Williams AP, Gallop PM, Aizenman E, Rosenberg PA. The putative essential nutrient pyrroloquinoline quinone is neuroprotective in a rodent model of hypoxic/ischemic brain injury. Neuroscience 1994; 62(2): 399-406.
[http://dx.doi.org/10.1016/0306-4522(94)90375-1] [PMID: 7830887]
[40]
Ikemoto K, Mori S, Mukai K. Synthesis and crystal structure of pyrroloquinoline quinol (PQQH2) and pyrroloquinoline quinone (PQQ). Acta Crystallogr B Struct Sci Cryst Eng Mater 2017; 73(Pt 3): 489-97.
[http://dx.doi.org/10.1107/S2052520617002281] [PMID: 28572558]
[41]
Yang C, Yu L, Kong L, et al. Pyrroloquinoline quinone (PQQ) inhibits lipopolysaccharide induced inflammation in part via downregulated NF-κB and p38/JNK activation in microglial and attenuates microglia activation in lipopolysaccharide treatment mice. PLoS One 2014; 9(10)e109502
[http://dx.doi.org/10.1371/journal.pone.0109502] [PMID: 25314304]
[42]
Yang XP, Zhong GF, Lin JP, Mao DB, Wei DZ. Pyrroloquinoline quinone biosynthesis in Escherichia coli through expression of the Gluconobacter oxydans pqqABCDE gene cluster. J Ind Microbiol Biotechnol 2010; 37(6): 575-80.
[http://dx.doi.org/10.1007/s10295-010-0703-z] [PMID: 20213113]
[43]
Bauerly KA, Storms DH, Harris CB, et al. Pyrroloquinoline quinone nutritional status alters lysine metabolism and modulates mitochondrial DNA content in the mouse and rat. Biochim Biophys Acta 2006; 1760(11): 1741-8.
[http://dx.doi.org/10.1016/j.bbagen.2006.07.009] [PMID: 17029795]
[44]
Stites T, Storms D, Bauerly K, et al. Pyrroloquinoline quinone modulates mitochondrial quantity and function in mice. J Nutr 2006; 136(2): 390-6.
[http://dx.doi.org/10.1093/jn/136.2.390] [PMID: 16424117]
[45]
Chowanadisai W, Bauerly KA, Tchaparian E, Wong A, Cortopassi GA, Rucker RB. Pyrroloquinoline quinone stimulates mitochondrial biogenesis through cAMP response element-binding protein phosphorylation and increased PGC-1alpha expression. J Biol Chem 2010; 285(1): 142-52.
[http://dx.doi.org/10.1074/jbc.M109.030130] [PMID: 19861415]
[46]
Rucker R, Chowanadisai W, Nakano M. Potential physiological importance of pyrroloquinoline quinone. Altern Med Rev 2009; 14(3): 268-77.
[PMID: 19803551]
[47]
Akagawa M, Minematsu K, Shibata T, Kondo T, Ishii T, Uchida K. Identification of lactate dehydrogenase as a mammalian pyrroloquinoline quinone (PQQ)-binding protein. Sci Rep 2016; 6: 26723.
[http://dx.doi.org/10.1038/srep26723] [PMID: 27230956]
[48]
Kobayashi M, Kim J, Kobayashi N, et al. Pyrroloquinoline quinone (PQQ) prevents fibril formation of alpha-synuclein. Biochem Biophys Res Commun 2006; 349(3): 1139-44.
[http://dx.doi.org/10.1016/j.bbrc.2006.08.144] [PMID: 16962995]
[49]
Nunome K, Miyazaki S, Nakano M, Iguchi-Ariga S, Ariga H. Pyrroloquinoline quinone prevents oxidative stress-induced neuronal death probably through changes in oxidative status of DJ-1. Biol Pharm Bull 2008; 31(7): 1321-6.
[http://dx.doi.org/10.1248/bpb.31.1321] [PMID: 18591768]
[50]
Fusco G, Göbel G, Zanoni R, et al. Aqueous polythiophene electrosynthesis: A new route to an efficient electrode coupling of PQQ-dependent glucose dehydrogenase for sensing and bioenergetic applications. Biosens Bioelectron 2018; 112: 8-17.
[http://dx.doi.org/10.1016/j.bios.2018.04.014] [PMID: 29684749]
[51]
Kim J, Harada R, Kobayashi M, Kobayashi N, Sode K. The inhibitory effect of pyrroloquinoline quinone on the amyloid formation and cytotoxicity of truncated alpha-synuclein. Mol Neurodegener 2010; 5: 20.
[http://dx.doi.org/10.1186/1750-1326-5-20] [PMID: 20482893]
[52]
Mann AP, Grebenciucova E, Lukas RV. Anti-N-methyl-D-aspartate-receptor encephalitis: Diagnosis, optimal management, and challenges. Ther Clin Risk Manag 2014; 10: 517-25.
[http://dx.doi.org/10.2147/TCRM.S61967] [PMID: 25061311]
[53]
Okamoto M, Gray JD, Larson CS, et al. Riluzole reduces amyloid beta pathology, improves memory, and restores gene expression changes in a transgenic mouse model of early-onset Alzheimer’s disease. Transl Psychiatry 2018; 8(1): 153.
[http://dx.doi.org/10.1038/s41398-018-0201-z] [PMID: 30108205]
[54]
Aizenman E, Hartnett KA, Zhong C, Gallop PM, Rosenberg PA. Interaction of the putative essential nutrient pyrroloquinoline quinone with the N-methyl-D-aspartate receptor redox modulatory site. J Neurosci 1992; 12(6): 2362-9.
[http://dx.doi.org/10.1523/JNEUROSCI.12-06-02362.1992] [PMID: 1318959]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy