[1]
H. Mittal, and M. Saraswat, "Classification of histopathological images through bag-of-visual-words and gravitational search algorithm", In: International Conference Soft Computing for Problem Solving, Springer: Singapore, 2017, pp. 231-241.
[2]
H.S. Mousavi, V. Monga, G. Rao, and A.U. Rao, "Automated discrimination of lower and higher grade gliomas based on histopathological image analysis", J. Pathol. Inform., vol. 6, p. 15, 2015.
[3]
Y. Zheng, Z. Jiang, F. Xie, H. Zhang, Y. Ma, H. Shi, and Y. Zhao, "Feature extraction from histopathological images based on nucleus-guided convolutional neural network for breast lesion classification", Pattern Recognit., vol. 71, pp. 14-25, 2017. [http://dx.doi.org/10.1016/j.patcog.2017.05.010].
[4]
N. Dalal, and B. Triggs, "Histograms of oriented gradients for human detection", In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Diego, CA, USA 2005, pp. 886-893. [http://dx.doi.org/10.1109/CVPR.2005.177]
[5]
D.G. Lowe, "Distinctive image features from scale-invariant keypoints", Int. J. Comput. Vis., vol. 60, no. 2, pp. 91-110, 2004. [http://dx.doi.org/10.1023/B:VISI.0000029664.99615.94].
[6]
T. Ojala, M. Pietikäinen, and D. Harwood, "A comparative study of texture measures with classification based on featured distributions", Pattern Recognit., vol. 29, no. 1, pp. 51-59, 1996. [http://dx.doi.org/10.1016/0031-3203(95)00067-4].
[7]
T.H. Vu, H.S. Mousavi, V. Monga, G. Rao, and U.K. Rao, "Histopathological image classification using discriminative feature-oriented dictionary learning", IEEE Trans. Med. Imaging, vol. 35, no. 3, pp. 738-751, 2016. [http://dx.doi.org/10.1109/TMI.2015.2493530]. [PMID: 26513781].
[8]
M. Saraswat, and K.V. Arya, "Feature selection and classification of leukocytes using random forest", Med. Biol. Eng. Comput., vol. 52, no. 12, pp. 1041-1052, 2014. [http://dx.doi.org/10.1007/s11517-014-1200-8]. [PMID: 25284218].
[9]
J. Shi, J. Wu, Y. Li, Q. Zhang, and S. Ying, "Histopathological image classification with color pattern random binary hashing-based pcanet and matrix-form classifier", IEEE J. Biomed. Health Inform., vol. 21, no. 5, pp. 1327-1337, 2017. [http://dx.doi.org/10.1109/JBHI.2016.2602823]. [PMID: 27576270].
[10]
U. Srinivas, H.S. Mousavi, V. Monga, A. Hattel, and B. Jayarao, "Simultaneous sparsity model for histopathological image representation and classification", IEEE Trans. Med. Imaging, vol. 33, no. 5, pp. 1163-1179, 2014. [http://dx.doi.org/10.1109/TMI.2014.2306173]. [PMID: 24770920].
[11]
T.H. Vu, H.S. Mousavi, V. Monga, G. Rao, and U.K. Rao, "Histopathological image classification using discriminative feature-oriented dictionary learning", IEEE Trans. Med. Imaging, vol. 35, no. 3, pp. 738-751, 2016. [http://dx.doi.org/10.1109/TMI.2015.2493530]. [PMID: 26513781].
[12]
J. Xu, X. Luo, G. Wang, H. Gilmore, and A. Madabhushi, "A deep convolutional neural network for segmenting and classifying epithelial and stromal regions in histopathological images", Neurocomputing, vol. 191, pp. 214-223, 2016. [http://dx.doi.org/10.1016/j.neucom.2016.01.034]. [PMID: 28154470].
[13]
Y. Bengio, A. Courville, and P. Vincent, "Representation learning: A review and new perspectives", IEEE Trans. Pattern Anal. Mach. Intell., vol. 35, no. 8, pp. 1798-1828, 2013. [http://dx.doi.org/10.1109/TPAMI.2013.50]. [PMID: 23787338].
[14]
J. Masci, U. Meier, D. Cireşan, and J. Schmidhuber, "Stacked convolutional auto-encoders for hierarchical feature extraction", In: International Conference on Artificial Neural Networks, Springer 2011, pp. 52-59. [http://dx.doi.org/10.1007/978-3-642-21735-7_7]
[15]
N. Tajbakhsh, S.R. Gurudu, and J. Liang, "Automated polyp detection in colonoscopy videos using shape and context information", IEEE Trans. Med. Imaging, vol. 35, no. 2, pp. 630-644, 2016. [http://dx.doi.org/10.1109/TMI.2015.2487997]. [PMID: 26462083].
[16]
M. Dash, and H. Liu, "Feature selection for classification", Intell. Data Anal., vol. 1, no. 3, pp. 131-156, 1997. [http://dx.doi.org/10.3233/IDA-1997-1302].
[17]
I. Guyon, "J. Weston, S. Barnhill and V. Vapnik, “Gene selection for cancer classification using support vector machines", Mach. Learn., vol. 46, no. 1-3, pp. 389-422, 2002. [http://dx.doi.org/10.1023/A:1012487302797].
[18]
S. Bhattacharyya, A. Sengupta, T. Chakraborti, A. Konar, and D.N. Tibarewala, "Automatic feature selection of motor imagery EEG signals using differential evolution and learning automata", Med. Biol. Eng. Comput., vol. 52, no. 2, pp. 131-139, 2014. [http://dx.doi.org/10.1007/s11517-013-1123-9]. [PMID: 24165805].
[19]
H. Deng, and G. Runger, "Feature selection via regularized trees", In: The IEEE 2012 International Joint Conference on Neural Networks (IJCNN) IEEE, Brisbane, QLD, Australia, 2012, pp. 1-8.
[20]
M. Saraswat, and K.V. Arya, "Feature selection and classification of leukocytes using random forest", Med. Biol. Eng. Comput., vol. 52, no. 12, pp. 1041-1052, 2014. [http://dx.doi.org/10.1007/s11517-014-1200-8]. [PMID: 25284218].
[21]
M. Saraswat, K. Arya, and H. Sharma, "Leukocyte segmentation in tissue images using differential evolution algorithm", Swarm Evol. Comput., vol. 11, pp. 46-54, 2013. [http://dx.doi.org/10.1016/j.swevo.2013.02.003].
[22]
H. Mittal, and M. Saraswat, "An optimum multi-level image thresholding segmentation using non-local means 2D histogram and exponential kbest gravitational search algorithm", Eng. Appl. Artif. Intell., vol. 71, pp. 226-235, 2018. [http://dx.doi.org/10.1016/j.engappai.2018.03.001].
[23]
A.K. Tripathi, K. Sharma, and M. Bala, "A novel clustering method using enhanced grey wolf optimizer and mapreduce", Big Data Res., vol. 14, pp. 93-100, 2018.
[24]
H. Mittal, R. Pal, A. Kulhari, and M. Saraswat, "Chaotic kbest gravitational search algorithm (CKGSA)", In: IEEE 2016 Ninth International Conference on Con-temporary Computing (IC3), Noida, India 2016, pp. 1-6.
[25]
K. Jaiswal, H. Mittal, and S. Kukreja, "Randomized grey wolf optimizer (RGWO) with randomly weighted coefficients", In: IEEE 2017 Tenth International Conference on Contemporary Computing (IC3), Noida, India,2017, pp. 1-3.
[26]
M. Saraswat, and K. Arya, "Supervised leukocyte segmentation in tissue images using multi-objective optimization technique", Eng. Appl. Artif. Intell., vol. 31, pp. 44-52, 2014. [http://dx.doi.org/10.1016/j.engappai.2013.09.010].
[27]
A.C. Pandey, D.S. Rajpoot, and M. Saraswat, "Data clustering using hybrid improved cuckoo search method", In: IEEE 2016Ninth International Conference on Contemporary Computing (IC3), Noida, India, 2016, pp. 1-6. [http://dx.doi.org/10.1109/IC3.2016.7880195]
[28]
T. Ashish, S. Kapil, and B. Manju, Parallel bat algorithm-based clustering using MapReduce. Networking Communication and Data Knowledge Engineering., Springer, 2018, pp. 73-82. [http://dx.doi.org/10.1007/978-981-10-4600-1_7]
[29]
E. Rashedi, H. Nezamabadi-Pour, and S. Saryazdi, "GSA: A gravitational search algorithm", Inf. Sci., vol. 179, pp. 2232-2248, 2009. [http://dx.doi.org/10.1016/j.ins.2009.03.004].
[30]
E. Emary, H.M. Zawbaa, C. Grosan, and A.E. Hassenian, "Feature subset selection approach by gray-wolf optimization", In: Proceedings of Afro-European Conference for Industrial Advancement 2015, pp. 1-13.
[31]
F.G. Mohammadi, and M.S. Abadeh, "Image steganalysis using a bee colony based feature selection algorithm", Eng. Appl. Artif. Intell., vol. 31, pp. 35-43, 2014. [http://dx.doi.org/10.1016/j.engappai.2013.09.016].
[32]
J. C. Bansal, H. Sharma, S. S. Jadon, and M. Clerc, "Spider monkey optimization algorithm for numerical optimization", Memetic Computing, pp. 31-47. [http://dx.doi.org/10.1007/s12293-013-0128-0]
[33]
S. Kumar, B. Sharma, V.K. Sharma, and R.C. Poonia, Evol.Intel, . 2018
[34]
S. Kumar, B. Sharma, V.K. Sharma, H. Sharma, and J.C. Bansal, "Plant leaf disease identification using exponential spider monkey optimization", Sustainable Computing: Inform. Syst., 2018. [In press] [http://dx.doi.org/10.1016/j.suscom.2018.10.004]
[35]
S. Mirjalili, A.H. Gandomi, S.Z. Mirjalili, S. Saremi, H. Faris, and S.M. Mirjalili, "Salp swarm algorithm: A bio-inspired optimizer for engineering design problems", Adv. Eng. Softw., vol. 114, pp. 163-191, 2017. [http://dx.doi.org/10.1016/j.advengsoft.2017.07.002].
[36]
H. Faris, M.M. Mafarja, A.A. Heidari, and I. Aljarah, "A.Z. Ala M, S. Mirjalili, H. Fujita, An efficient binary salp swarm algorithm with crossover scheme for feature selection problems", Knowl. Base. Syst., vol. 154, pp. 43-67, 2018. [http://dx.doi.org/10.1016/j.knosys.2018.05.009].
[37]
G.I. Sayed, G. Khoriba, and M.H. Haggag, "A novel chaotic salp swarm algorithm for global optimization and feature selection", Appl. Intell., pp. 1-20, 2018. [http://dx.doi.org/10.1007/s10489-018-1158-6].
[38]
A.A. El-Fergany, "Extracting optimal parameters of PEM fuel cells using Salp Swarm Optimizer", Renew. Energy, vol. 119, pp. 641-648, 2018. [http://dx.doi.org/10.1016/j.renene.2017.12.051].
[39]
M. Mafarja, R. Jarrar, S. Ahmad, and A.A. Abusnaina, "Feature selection using binary particle swarm optimization with time varying inertia weight strategies", In: Proceedings of the 2nd International Conference on Future Networks and Distributed Systems, ACM 2018, p. 18. [http://dx.doi.org/10.1145/3231053.3231071]
[40]
S. Mirjalili, "Sca: A sine cosine algorithm for solving optimization problems", Knowl. Base. Syst., vol. 96, pp. 120-133, 2016. [http://dx.doi.org/10.1016/j.knosys.2015.12.022].
[41]
S. Mirjalili, "Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm", Knowl. Base. Syst., vol. 89, pp. 228-249, 2015. [http://dx.doi.org/10.1016/j.knosys.2015.07.006].
[42]
S. Mirjalili, and A. Lewis, "The whale optimization algorithm", Adv. Eng. Softw., vol. 95, pp. 51-67, 2016. [http://dx.doi.org/10.1016/j.advengsoft.2016.01.008].
[43]
R.N. Mantegna, "Fast, accurate algorithm for numerical simulation of Lévy stable stochastic processes", Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics, vol. 49, no. 5, pp. 4677-4683, 1994. [http://dx.doi.org/10.1103/PhysRevE.49.4677]. [PMID: 9961762].
[44]
J. Kennedy, Particle swarm optimization. Encyclopedia of machine learning., Springer, 2011, pp. 760-766.
[45]
E. Rashedi, H. Nezamabadi-Pour, and S. Saryazdi, "Gsa: A gravitational search algorithm", Inf. Sci., vol. 179, no. 13, pp. 2232-2248, 2009. [http://dx.doi.org/10.1016/j.ins.2009.03.004].
[46]
X.S. Yang, A new metaheuristic bat-inspired algorithm. Nature inspired cooperative strategies for optimization (NICSO 2010)., Springer, 2010, pp. 65-74. [http://dx.doi.org/10.1007/978-3-642-12538-6_6]
[47]
X.S. Yang, "Flower pollination algorithm for global optimization", In: International Conference on Unconventional Computing and Natural Computation, Springer: Berlin, Heidelberg 2012, pp. 240-249. [http://dx.doi.org/10.1007/978-3-642-32894-7_27]
[48]
E. Cuevas, A. Echavarría, and M.A. Ramírez-Ortegón, "An optimization algorithm inspired by the states of matter that improves the balance between exploration and exploitation", Appl. Intell., vol. 40, no. 2, pp. 256-272, 2014. [http://dx.doi.org/10.1007/s10489-013-0458-0].
[49]
X.S. Yang, S.S.S. Hosseini, and A.H. Gandomi, "Firefly algorithm for solving non-convex economic dispatch problems with valve loading effect", Appl. Soft Comput., vol. 12, no. 3, pp. 1180-1186, 2012. [http://dx.doi.org/10.1016/j.asoc.2011.09.017].
[50]
Blue Histology, Available from:, http://www.lab.anhb.uwa.edu.au/mb140/Bluehistology
[51]
K. Sirinukunwattana, S.E. Ahmed Raza, Y-W. Tsang, D.R. Snead, I.A. Cree, and N.M. Rajpoot, "Locality sensitive deep learning for detection and classification of nuclei in routine colon cancer histology images", IEEE Trans. Med. Imaging, vol. 35, no. 5, pp. 1196-1206, 2016. [http://dx.doi.org/10.1109/TMI.2016.2525803]. [PMID: 26863654].