[1]
Grubbs, R.H. Olefin metathesis. Tetrahedron, 2004, 60, 7117-7140.
[2]
Hoveyda, A.H.; Zhugralin, A.R. The remarkable metal-catalysed olefin metathesis reaction. Nature, 2007, 450, 243-251.
[3]
Kędziorek, M.; Grela, K. Metathesis. In:Applied Homogeneous Catalysis with Organometallic Compounds: A Comprehensive Handbook in Four Volumes; 3rd ed.; Cornils, B.; Herrmann, W.A.; Beller, M.; Paciello, R., Ed.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim. , 2018. Vol. 4, pp. 1333-1364.
[4]
Chauvin, Y. Olefin metathesis: The early days (Nobel lecture). Angew. Chem. Int. Ed., 2006, 45, 3741-3747.
[5]
Schrock, R.R. Multiple metal-carbon bonds for catalytic metathesis reactions (Nobel lecture). Angew. Chem. Int. Ed., 2006, 45, 3748-3759.
[6]
Grubbs, R.H. Olefin-metathesis catalysts for the preparation of molecules and materials (Nobel lecture). Angew. Chem. Int. Ed., 2006, 45, 3760-3765.
[7]
Grubbs, R.H. Handbook of Metathesis: Catalyst Development; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim. , 2003.
[8]
Grubbs, R.H.; Wenzel, A.G.; O’Leary, D.J.; Khosravi, E. Handbook of Metathesis, Set; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim. , 2015.
[9]
Fürstner, A. Alkene Metathesis in Organic Synthesis; Springer-Verlag: Berlin, Heidelberg, 1998.
[10]
Grela, K. Olefin Metathesis: Theory and Practice, 1st ed; John Wiley & Sons, Inc.: New York, 2014.
[11]
Cossy, J.; Arseniyadis, S.; Meyer, C. Metathesis in Natural Product Synthesis: Strategies, Substrates and Catalysts; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim,. , 2010.
[12]
Dragutan, V.; Demonceau, A.; Dragutan, I.; Finkelshtein, E.S. Green Metathesis Chemistry; Springer: Dordrecht, 2010.
[13]
Imamoglu, Y. Metathesis Polymerization of Olefins and Polymerization of Alkynes; Springer: Dordrecht, 1998.
[14]
Imamoglu, Y.; Bencze, L. Novel Metathesis Chemistry: Well-Defined Initiator Systems for Specialty Chemical Synthesis, Tailored Polymers and Advanced Material Applications; Springer: Dordrecht, 2003.
[15]
Imamoglu, Y.; Dragutan, V.; Karabulut, S. Metathesis Chemistry: From Nanostructure Design to Synthesis of Advanced Materials; Springer: Dordrecht, 2007.
[16]
Ivin, K.J.; Mol, J.C. Olefin Metathesis and Metathesis Polymerization; Elsevier Ltd.: Amsterdam, 1997.
[17]
Buchmeiser, M.R. Metathesis Polymerization; Springer-Verlag: Berlin, Heidelberg, 2005.
[18]
Schrock, R.R.; Hoveyda, A.H. Molybdenum and tungsten imido alkylidene complexes as efficient olefin-metathesis catalysts. Angew. Chem. Int. Ed., 2003, 42, 4592-4633.
[19]
Schrock, R.R.; Czekelius, C. Recent advances in the syntheses and applications of molybdenum and tungsten alkylidene and alkylidyne catalysts for the metathesis of alkenes and alkynes. Adv. Synth. Catal., 2007, 349, 55-77.
[20]
Katz, T.J. Olefin metatheses and related reactions initiated by carbene derivatives of metals in low oxidation states. Angew. Chem. Int. Ed., 2005, 44, 3010-3019.
[21]
Vougioukalakis, G.C.; Grubbs, R.H. Ruthenium-based heterocyclic carbene-coordinated olefin metathesis catalysts. Chem. Rev., 2010, 110, 1746-1787.
[22]
Samojłowicz, C.; Bieniek, M.; Grela, K. Ruthenium-based olefin metathesis catalysts bearing N-heterocyclic carbene ligands. Chem. Rev., 2009, 109, 3708-3742.
[23]
Mavila, S.; Gabriel Lemcoff, N. In:N-Heterocyclic Carbenes: Effective Tools for Organometallic Synthesis,; 1st ed.; Nolan, S.P., Ed.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim,. , 2014. pp. 307-340
[24]
Czaban, J.; Torborg, C.; Grela, K. In:Sustainable Catalysis: Challenges and Practices for the Pharmaceutical and Fine Chemical Industries; 1st ed.; Dunn, P.J.; Hii, K.K.; Krische, M.J.; Williams, M.T., Ed.; John Wiley & Sons, Inc.: New York. , 2013. pp. 163-214.
[25]
Buchmeiser, M.R. Polymer-supported well-defined metathesis catalysts. Chem. Rev., 2009, 109, 303-321.
[26]
Monfette, S.; Fogg, D.E. Equilibrium ring-closing metathesis. Chem. Rev., 2009, 109, 3783-3816.
[27]
Han, S-Y.; Chang, S. In:Handbook of Metathesis: Catalyst Development; Grubbs, R.H., Ed.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim. , 2003. Vol. 2, pp. 5-127
[28]
Nolan, S.P.; Clavier, H. Chemoselective olefin metathesis transformations mediated by ruthenium complexes. Chem. Soc. Rev., 2010, 39, 3305-3316.
[29]
Patrick Montgomery, T.; Ahmed, T.S.; Grubbs, R.H. Stereoretentive olefin metathesis: an avenue to kinetic selectivity. Angew. Chem. Int. Ed., 2017, 56, 11024-11036.
[30]
Kress, S.; Blechert, S. Asymmetric catalysts for stereocontrolled olefin metathesis reactions. Chem. Soc. Rev., 2012, 41, 4389-4408.
[31]
Cannon, J.S.; Grubbs, R.H. Alkene chemoselectivity in ruthenium-catalyzed Z-selective olefin metathesis. Angew. Chem. Int. Ed., 2013, 52, 9001-9004.
[32]
Marx, V.M.; Rosebrugh, L.E.; Herbert, M.B.; Grubbs, R.H. Ruthenium in Catalysis; Dixneuf P.; Bruneau C., Ed.; Springer-Verlag: Cham,, 2014. In: Topics in Organometallic Chemistry, Vol. 48, pp. 1-17
[33]
Shahane, S.; Bruneau, C.; Fischmeister, C. Z selectivity: Recent advances in one of the current major challenges of olefin metathesis. ChemCatChem, 2013, 5, 3436-3459.
[34]
Nicolaou, K.C.; Bulger, P.G.; Sarlah, D. Metathesis reactions in total synthesis. Angew. Chem. Int. Ed., 2005, 44, 4490-4527.
[35]
Fürstner, A. Metathesis in total synthesis. Chem. Commun., 2011, 47, 6505-6511.
[36]
Porta, M.; Blechert, S. In:Metathesis in Natural Product Synthesis: Strategies, Substrates and Catalysts;; Cossy, J.; Arseniyadis, S.; Meyer, C., Ed.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim,. , 2010. pp. 313-341
[37]
Schuster, M.; Blechert, S. Olefin metathesis in organic chemistry. Angew. Chem. Int. Ed. Engl., 1997, 36, 2036-2056.
[38]
Kissling, R.M.; Nolan, S.P. In:Encyclopedia of Inorganic and Bioinorganic Chemistry; John Wiley & Sons, Ltd.: New York, 2011, pp. 1-45.
[39]
Lin, Y.A.; Chalker, J.M.; Davis, B.G. Olefin metathesis for site-selective protein modification. ChemBioChem, 2009, 10, 959-969.
[40]
Chikkali, S.; Mecking, S. Refining of plant oils to chemicals by olefin metathesis. Angew. Chem. Int. Ed., 2012, 51, 5802-5808.
[41]
Bielawski, C.W.; Grubbs, R.H. Living ring-opening metathesis polymerization. Prog. Polym. Sci., 2007, 32, 1-29.
[42]
da Silva, L.C.; Rojas, G.; Schulz, M.D.; Wagener, K.B. Acyclic diene metathesis polymerization: history, methods and applications. Prog. Polym. Sci., 2017, 69, 79-107.
[43]
Fink, J.K. Handbook of Engineering and Specialty Thermoplastics: Polyolefins and Styrenics; John Wiley & Sons, Inc.: New York, 2010, pp. 1-39.
[44]
Nuyken, O.; Schneider, M.; Frenzel, U. In: Encyclopedia of Polymer Science and Technology; John Wiley & Sons, Inc.: New York, 2012; pp. 1-57.
[45]
Knall, A-C.; Slugovc, C. In: Olefin Metathesis: Theory and Practice, 1st ed; Grela, K., Ed.; John Wiley & Sons, Inc.: New York, 2014; pp. 269-284.
[46]
Chen, Y.; Abdellatif, M.M.; Nomura, K. Olefin metathesis polymerization: some recent developments in the precise polymerizations for synthesis of advanced materials (by ROMP, ADMET). Tetrahedron, 2018, 74, 619-643.
[47]
Blackwell, H.E.; O’Leary, D.J.; Chatterjee, A.K.; Washenfelder, R.A.; Andrew Bussmann, D.; Grubbs, R.H. New approaches to olefin cross-metathesis. J. Am. Chem. Soc., 2000, 122, 58-71.
[48]
Connon, S.J.; Blechert, S. Recent developments in olefin cross-metathesis. Angew. Chem. Int. Ed., 2003, 42, 1900-1923.
[49]
Chatterjee, A.K. In: Handbook of Metathesis: Catalyst Development; Grubbs, R.H., Ed.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim. , 2003. Vol. 2, pp. 246-295
[50]
Chatterjee, A.K.; Choi, T-L.; Sanders, D.P.; Grubbs, R.H. A general model for selectivity in olefin cross metathesis. J. Am. Chem. Soc., 2003, 125, 11360-11370.
[51]
Prunet, J. Application of olefin cross-metathesis to the synthesis of biologically active natural products. Curr. Top. Med. Chem., 2005, 5, 1559-1577.
[52]
Aljarilla, A.; Cristóbal López, J.; Plumet, J. Metathesis reactions of carbohydrates: recent highlights in cross-metathesis. Eur. J. Org. Chem., 2010, 6123-6143.
[53]
Miao, X.; Dixneuf, P.H.; Fischmeister, C.; Bruneau, C. A green route to nitrogen-containing groups: the acrylonitrile cross-metathesis and applications to plant oil derivatives. Green Chem., 2011, 13, 2258-2271.
[54]
Marmo, J.C.; Wagener, K.B. Acyclic diene metathesis (ADMET) depolymerization. Synthesis of mass-exact telechelic polybutadiene oligomers. Macromolecules, 1993, 26, 2137-2138.
[55]
Hillmyer, M.A.; Nguyen, S.T.; Grubbs, R.H. Utility of a ruthenium metathesis catalyst for the preparation of end-functionalized polybutadiene. Macromolecules, 1997, 30, 718-721.
[56]
Herbert, M.B.; Grubbs, R.H. Z-selective cross metathesis with ruthenium catalysts: Synthetic applications and mechanistic implications. Angew. Chem. Int. Ed., 2015, 54, 5018-5024.
[57]
Meek, S.J.; O’Brien, R.V.; Llaveria, J.; Schrock, R.R.; Hoveyda, A.H. Catalytic Z-selective olefin cross-metathesis for natural product synthesis. Nature, 2011, 471, 461-466.
[58]
Koh, M.J.; Nguyen, T.T.; Zhang, H.; Schrock, R.R.; Hoveyda, A.H. Direct synthesis of Z-alkenyl halides through catalytic cross-metathesis. Nature, 2016, 531, 459-465.
[59]
Fürstner, A.; Thiel, O.R.; Ackermann, L.; Schanz, H-J.; Nolan, S.P. Ruthenium carbene complexes with N,N′-bis(mesityl)imidazol-2-ylidene ligands: RCM catalysts of extended scope. J. Org. Chem., 2000, 65, 2204-2207.
[60]
Choi, T-L.; Grubbs, R.H. Tandem ring-closing metathesis reaction with a ruthenium catalyst containing a N-heterocyclic ligand. Chem. Commun., 2001, 2648-2649.
[61]
Lee, C.W.; Grubbs, R.H. Formation of macrocycles via ring-closing olefin metathesis. J. Org. Chem., 2001, 66, 7155-7158.
[62]
Morgan, J.P.; Morrill, C.; Grubbs, R.H. Selective ring opening cross metathesis of cyclooctadiene and trisubstituted cycloolefins. Org. Lett., 2002, 4, 67-70.
[63]
Lee, C.W.; Choi, T-L.; Grubbs, R.H. Ring expansion via olefin metathesis. J. Am. Chem. Soc., 2002, 124, 3224-3225.
[64]
Chatterjee, A.K.; Morgan, J.P.; Scholl, M.; Grubbs, R.H. Synthesis of functionalized olefins by cross and ring-closing metatheses. J. Am. Chem. Soc., 2000, 122, 3783-3784.
[65]
Choi, T-L.; Lee, C.W.; Chatterjee, A.K.; Grubbs, R.H. Olefin metathesis involving ruthenium enoic carbene complexes. J. Am. Chem. Soc., 2001, 123, 10417-10418.
[66]
Rybak, A.; Fokou, P.A.; Meier, M.A.R. Metathesis as a versatile tool in oleochemistry. Eur. J. Lipid Sci. Technol., 2008, 110, 797-804.
[67]
Meier, M.A.R. Metathesis with oleochemicals: New approaches for the utilization of plant oils as renewable resources in polymer science. Macromol. Chem. Phys., 2009, 210, 1073-1079.
[68]
Sinclair, F.; Chen, L.; Greenland, B.W.; Shaver, M.P. Installing multiple functional groups on biodegradable polyesters via post-polymerization olefin cross-metathesis. Macromolecules, 2016, 49, 6826-6834.
[69]
Sinclair, F.; Alkattan, M.; Prunet, J.; Shaver, M.P. Olefin cross metathesis and ring-closing metathesis in polymer chemistry. Polym. Chem., 2017, 8, 3385-3398.
[70]
Morrison, S.D.; Liskamp, R.M.J.; Prunet, J. Tailoring polyethers for post-polymerization functionalization by cross metathesis. Org. Lett., 2018, 20, 2253-2256.
[71]
Schulz, M.D.; Ford, R.R.; Wagener, K.B. Insertion metathesis depolymerization. Polym. Chem., 2013, 4, 3656-3658.
[72]
Hawker, C.J.; Wooley, K.L. The convergence of synthetic organic and polymer chemistries. Science, 2005, 309, 1200-1205.
[73]
Dong, Y.; Matson, J.B.; Edgar, K.J. Olefin cross-metathesis in polymer and polysaccharide chemistry: A review. Biomacromolecules, 2017, 18, 1661-1676.
[74]
Otsuka, H.; Muta, T.; Sakada, M.; Maeda, T.; Takahara, A. Scrambling reaction between polymers prepared by step-growth and chain-growth polymerizations: macromolecular cross-metathesis between 1,4-polybutadiene and olefin-containing polyester. Chem. Commun., 2009, 1073-1075.
[75]
Maeda, T.; Kamimura, S.; Ohishi, T.; Takahara, A.; Otsuka, H. Synthesis of polyethylene/polyester copolymers through main chain exchange reactions via olefin metathesis. Polymer, 2014, 55, 6245-6251.
[76]
Ohishi, T.; Suyama, K.; Kamimura, S.; Sakada, M.; Imato, K.; Kawahara, S.; Takahara, A.; Otsuka, H. Metathesis-driven scrambling reactions between polybutadiene or naturally occurring polyisoprene and olefin-containing polyurethane. Polymer, 2015, 78, 145-153.
[77]
Gringolts, M.L.; Denisova, Yu.I.; Shandryuk, G.A.; Krentsel, L.B.; Litmanovich, A.D.; Finkelshtein, E.Sh.; Kudryavtsev, Y.V. Synthesis of norbornene-cyclooctene copolymers by the cross-metathesis of polynorbornene with polyoctenamer. RSC Advances, 2015, 5, 316-319.
[78]
Choi, T-L.; Rutenberg, I.M.; Grubbs, R.H. Synthesis of A,B-alternating copolymers by ring-opening-insertion-metathesis polymerization. Angew. Chem. Int. Ed., 2002, 41, 3839-3841.
[79]
Demel, S.; Slugovc, C.; Stelzer, F.; Fodor-Csorba, K.; Galli, G. Alternating diene metathesis polycondensation (ALTMET) - a versatile tool for the preparation of perfectly alternating AB copolymers. Macromol. Rapid Commun., 2003, 24, 636-641.
[80]
Schulz, M.D.; Wagener, K.B. Solvent effects in alternating ADMET polymerization. ACS Macro Lett., 2012, 1, 449-451.
[81]
Ding, L.; Xu, M.; Wang, J.; Liao, Y.; Qiu, J. Controlled synthesis of azobenzene functionalized homo and copolymers via direct acyclic diene metathesis polymerization. Polymer, 2014, 55, 1681-1687.
[82]
Ding, L.; Zheng, X.Q.; Lu, R.; An, J.; Qiu, J. Perfectly AB-alternating copolymers via alternating diene metathesis polymerization: One-step synthesis, characterization and properties. Polym. Int., 2014, 63, 997-1002.
[83]
Lee, H.K.; Bang, K.T.; Hess, A.; Grubbs, R.H.; Choi, T.L. Multiple olefin metathe0sis polymerization that combines all three olefin metathesis transformations: Ring-opening, ring-closing, and cross metathesis. J. Am. Chem. Soc., 2015, 137, 9262-9265.
[84]
Li, Z-L.; Zeng, F-R.; Ma, J-M.; Sun, L-H.; Zeng, Z.; Jiang, H. Precision aliphatic polyesters with alternating microstructures via cross-metathesis polymerization: an event of sequence control. Macromol. Rapid Commun., 2017, 38, 1700050.
[85]
Zeng, F-R.; Ma, J-M.; Sun, L-H.; Zeng, Z.; Jiang, H.; Li, Z-L. Optically active precision aliphatic polyesters via cross-metathesis polymerization. Macromol. Chem. Phys., 2018, 219, 1800031.
[86]
Winkler, M.; de Espinosa, L.M.; Barner-Kowollik, C.; Meier, M.A.R. A new approach for modular polymer-polymer conjugations via heck coupling. Chem. Sci., 2012, 3, 2607-2615.
[87]
Winkler, M.; Mueller, J.O.; Oehlenschlaeger, K.K.; de Espinosa, L.M.; Meier, M.A.R.; Barner-Kowollik, C. Highly orthogonal functionalization of ADMET polymers via photo-induced Diels-Alder reactions. Macromolecules, 2012, 45, 5012-5019.
[88]
Ding, L.; Wang, C.; Lin, L.; Zhu, Z. One-pot sequential ring-opening metathesis polymerization and acyclic diene metathesis polymerization synthesis of unsaturated block polyphosphoesters. Macromol. Chem. Phys., 2015, 216, 761-769.
[89]
Sehlinger, A.; de Espinosa, L.M.; Meier, M.A.R. Synthesis of diverse asymmetric α,ω-dienes via the Passerini three-component reaction for head-to-tail ADMET polymerization. Macromol. Chem. Phys., 2013, 214, 2821-2828.
[90]
Ding, L.; Lu, R.; An, J.; Zheng, X.; Qiu, J. Cyclic polyphosphoesters synthesized by acyclic diene metathesis polymerization and ring closing metathesis. React. Funct. Polym., 2013, 73, 1242-1248.
[91]
Ding, L.; Song, W.; Jiang, R.; Zhu, L. Macrocycle-based topological azo-polymers: facile synthesis and unusual photoresponsive properties. Polym. Chem., 2017, 8, 7133-7142.
[92]
de Espinosa, L.M.; Meier, M.A.R. Synthesis of star- and block-copolymers using ADMET: Head-to-tail selectivity during step-growth polymerization. Chem. Commun., 2011, 47, 1908-1910.
[93]
de Espinosa, L.M.; Winkler, M.; Meier, M.A.R. Acyclic diene metathesis polymerization and Heck polymer-polymer conjugation for the synthesis of star-shaped block copolymers. Macromol. Rapid Commun., 2013, 34, 1381-1386.
[94]
Unverferth, M.; Meier, M.A.R. Tuning the polarity of ADMET derived star-shaped polymers via thiol-ene chemistry. Polymer, 2014, 55, 5571-5575.
[95]
Qiu, J.; Zhang, J.; Yu, F.; Wei, J.; Ding, L. Novel ABC miktoarm star terpolyphosphoesters: facile construction and high-flame retardant property. J. Polym. Sci.Part A Polym. Chem., 2016, 54, 692-701.
[96]
Ding, L.; Wei, J.; Qiu, J.; Wang, J.; Zhu, Z. Star-shaped polyphosphoesters with reactive end groups synthesized via acyclic diene metathesis polymerization and their transformation to nanostructures. RSC Advances, 2014, 4, 22342-22349.
[97]
Ding, L.; Wang, C.; Jiang, R.; Wang, L.; Song, W. Preparation of small and photoresponsive polymer nanoparticles by intramolecular crosslinking of reactive star azo-polymers. React. Funct. Polym., 2016, 109, 56-63.
[98]
Ding, L.; Li, J.; Li, T.; Zhang, L.; Song, W. Linear, Y-shaped, and H-shaped amphiphilic azobenzene copolymers: facile synthesis and topological effect on self-assembly and photoresponsive property. React. Funct. Polym., 2017, 121, 15-22.
[99]
Ding, L.; Qiu, J.; Li, J.; Wang, C.; Wang, L. Novel photoresponsive linear, graft, and comb-like copolymers with azobenzene chromophores in the main-chain and/or side-chain: facile one-pot synthesis and photoresponse properties. Macromol. Rapid Commun., 2015, 36, 1578-1584.
[100]
Ding, L.; Qiu, J.; Wei, J.; Zhu, Z. Convenient divergent synthesis of linear-dendron block polyphosphoesters via acyclic diene metathesis polymerization. Polym. Chem., 2014, 5, 4285-4292.
[101]
Yan, D.; Gao, C.; Frey, H. Hyperbranched Polymers: Synthesis, Properties, and Applications; John Wiley & Sons: Hoboken, New Jersey, 2011.
[102]
Gorodetskaya, I.A.; Choi, T-L.; Grubbs, R.H. Hyperbranched macromolecules via olefin metathesis. J. Am. Chem. Soc., 2007, 129, 12672-12673.
[103]
Gorodetskaya, I.A.; Gorodetsky, A.A.; Vinogradova, E.V.; Grubbs, R.H. Functionalized hyperbranched polymers via olefin metathesis. Macromolecules, 2009, 42, 2895-2898.
[104]
Ding, L.; Zhang, L.; Han, H.; Huang, W.; Song, C.; Xie, M.; Zhang, Y. Hyperbranched azo-polymers synthesized by acyclic diene metathesis polymerization of an AB2 monomer. Macromolecules, 2009, 42, 5036-5042.
[105]
Ding, L.; Xie, M.; Yang, D.; Song, C. Efficient synthesis of long-chain highly branched polymers via one-pot tandem ring-opening metathesis polymerization and acyclic diene metathesis polymerization. Macromolecules, 2010, 43, 10336-10342.
[106]
Ding, L.; Yang, G.; Xie, M.; Gao, D.; Yu, J.; Zhang, Y. More insight into tandem ROMP and ADMET polymerization for yielding reactive long-chain highly branched polymers and their transformation to functional polymer nanoparticles. Polymer, 2012, 53, 333-341.
[107]
Xie, M.; Ding, L.; You, Z.; Gao, D.; Yang, G.; Han, H. Robust hybrid nanostructures comprising gold and thiol-functionalized polymer nanoparticles: facile preparation, diverse morphologies and unique properties. J. Mater. Chem., 2012, 22, 14108-14118.
[108]
Wang, N.; Ding, L. Cyclodextrin-based hyperbranched polymers by acyclic diene metathesis polymerization of an ABn monomer: molecule design, synthesis, and characterization. J. Polym. Res., 2012, 19, 9863.
[109]
Ding, L.; Qiu, J.; Lu, R.; Zheng, X.; An, J. Hyperbranched polyphosphoesters with reactive end groups synthesized via acyclic diene metathesis polymerization and their transformation to crosslinked nanoparticles. J. Polym. Sci.Part A Polym. Chem., 2013, 51, 4331-4340.
[110]
Ding, L.; Lin, L.; Wang, C.; Qiu, J.; Zhu, Z. Facile synthesis of linear-hyperbranched polyphosphoesters via one-pot tandem ROMP and ADMET polymerization and their transformation to architecturally defined nanoparticles. J. Polym. Sci.Part A Polym. Chem., 2015, 53, 964-972.
[111]
Zeng, F.R.; Ma, J.M.; Sun, L.H.; Zeng, Z.; Jiang, H.; Li, Z.L. Hyperbranched aliphatic polyester via cross-metathesis polymerization: Synthesis and postpolymerization modification. Macromol. Rapid Commun., 2018, 39, 1700658.
[112]
Newkome, G.R.; Moorefiled, C.N.; Vögtle, F. Dendrimers and Dendrons: Concepts, Synthesis, Applications; VCH: Weinheim, Germany, 2001.
[113]
Kreye, O.; Kugele, D.; Faust, L.; Meier, M.A.R. Divergent dendrimer synthesis via the Passerini three-component reaction and olefin cross-metathesis. Macromol. Rapid Commun., 2014, 35, 317-322.
[114]
Lutz, J-F.; Lehn, J-M.; Meijer, E.W.; Matyjaszewski, K. From precision polymers to complex materials and systems. Nat. Rev. Mater., 2016, 1, 16024.
[115]
Mathers, R.T.; Meier, M.A.R. Green Polymerization Methods: Renewable Starting Materials, Catalysis and Waste Reduction; WILEY-VCH: Boschstr. 12, 69469 Weinheim, Germany. , 2011.
[116]
Cheng, H.N.; Gross, R.A.; Smith, P.B. Green Polymer Chemistry: Biobased Materials and Biocatalysis; American Chemical Society: Washington, DC, USA, 2015.