Generic placeholder image

Current Organic Synthesis

Editor-in-Chief

ISSN (Print): 1570-1794
ISSN (Online): 1875-6271

Review Article

Precision Aliphatic Polyesters via Cross-Metathesis Polymerization

Author(s): Yang Liang, Fu-Rong Zeng and Zi-Long Li*

Volume 16, Issue 2, 2019

Page: [188 - 204] Pages: 17

DOI: 10.2174/1570179416666181206095131

Price: $65

Abstract

Cross-metathesis (CM), a carbon-carbon bond transformation that features exceptional selectivity, reactivity and tolerance to functionalities, has been extensively investigated in organic chemistry. On the other hand, the use of CM in polymer synthesis is also growing in both scope and breadth, thus offering a wealth of opportunities for introducing a vast range of functionalities into polymer backbone so as to manipulate properties and expand applications. In this review, we propose the concept of “cross-metathesis polymerization” (CMP) referring to polymer synthesis via repetitive CM reaction and summarize emerging strategies for the precision synthesis of aliphatic polyesters via CMP based on the high CM tendency between acrylates and α- olefins. Due to the carbon-carbon bond-forming step-growth polymerization nature, CMP brings a new concept to polyester synthesis. This remarkable polymerization method possesses unique advantages such as mild condition, full conversion, fast kinetics, almost quantitative yield and extraordinary tolerance to functionalities. In particular, CMP provides the ability to regulate macromolecular architectures including linear, block, cyclic, star, graft, dendron, hyperbranched and dendrimer topologies. Ultimately, advanced polymeric materials with outstanding performances can be facially constructed based on these sophisticated macromolecular architectures.

Keywords: Cross-metathesis polymerization (CMP), aliphatic polyester, precision synthesis, topology control, olefin metathesis (OM), crossmetathesis (CM).

Graphical Abstract

[1]
Grubbs, R.H. Olefin metathesis. Tetrahedron, 2004, 60, 7117-7140.
[2]
Hoveyda, A.H.; Zhugralin, A.R. The remarkable metal-catalysed olefin metathesis reaction. Nature, 2007, 450, 243-251.
[3]
Kędziorek, M.; Grela, K. Metathesis. In:Applied Homogeneous Catalysis with Organometallic Compounds: A Comprehensive Handbook in Four Volumes; 3rd ed.; Cornils, B.; Herrmann, W.A.; Beller, M.; Paciello, R., Ed.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim. , 2018. Vol. 4, pp. 1333-1364.
[4]
Chauvin, Y. Olefin metathesis: The early days (Nobel lecture). Angew. Chem. Int. Ed., 2006, 45, 3741-3747.
[5]
Schrock, R.R. Multiple metal-carbon bonds for catalytic metathesis reactions (Nobel lecture). Angew. Chem. Int. Ed., 2006, 45, 3748-3759.
[6]
Grubbs, R.H. Olefin-metathesis catalysts for the preparation of molecules and materials (Nobel lecture). Angew. Chem. Int. Ed., 2006, 45, 3760-3765.
[7]
Grubbs, R.H. Handbook of Metathesis: Catalyst Development; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim. , 2003.
[8]
Grubbs, R.H.; Wenzel, A.G.; O’Leary, D.J.; Khosravi, E. Handbook of Metathesis, Set; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim. , 2015.
[9]
Fürstner, A. Alkene Metathesis in Organic Synthesis; Springer-Verlag: Berlin, Heidelberg, 1998.
[10]
Grela, K. Olefin Metathesis: Theory and Practice, 1st ed; John Wiley & Sons, Inc.: New York, 2014.
[11]
Cossy, J.; Arseniyadis, S.; Meyer, C. Metathesis in Natural Product Synthesis: Strategies, Substrates and Catalysts; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim,. , 2010.
[12]
Dragutan, V.; Demonceau, A.; Dragutan, I.; Finkelshtein, E.S. Green Metathesis Chemistry; Springer: Dordrecht, 2010.
[13]
Imamoglu, Y. Metathesis Polymerization of Olefins and Polymerization of Alkynes; Springer: Dordrecht, 1998.
[14]
Imamoglu, Y.; Bencze, L. Novel Metathesis Chemistry: Well-Defined Initiator Systems for Specialty Chemical Synthesis, Tailored Polymers and Advanced Material Applications; Springer: Dordrecht, 2003.
[15]
Imamoglu, Y.; Dragutan, V.; Karabulut, S. Metathesis Chemistry: From Nanostructure Design to Synthesis of Advanced Materials; Springer: Dordrecht, 2007.
[16]
Ivin, K.J.; Mol, J.C. Olefin Metathesis and Metathesis Polymerization; Elsevier Ltd.: Amsterdam, 1997.
[17]
Buchmeiser, M.R. Metathesis Polymerization; Springer-Verlag: Berlin, Heidelberg, 2005.
[18]
Schrock, R.R.; Hoveyda, A.H. Molybdenum and tungsten imido alkylidene complexes as efficient olefin-metathesis catalysts. Angew. Chem. Int. Ed., 2003, 42, 4592-4633.
[19]
Schrock, R.R.; Czekelius, C. Recent advances in the syntheses and applications of molybdenum and tungsten alkylidene and alkylidyne catalysts for the metathesis of alkenes and alkynes. Adv. Synth. Catal., 2007, 349, 55-77.
[20]
Katz, T.J. Olefin metatheses and related reactions initiated by carbene derivatives of metals in low oxidation states. Angew. Chem. Int. Ed., 2005, 44, 3010-3019.
[21]
Vougioukalakis, G.C.; Grubbs, R.H. Ruthenium-based heterocyclic carbene-coordinated olefin metathesis catalysts. Chem. Rev., 2010, 110, 1746-1787.
[22]
Samojłowicz, C.; Bieniek, M.; Grela, K. Ruthenium-based olefin metathesis catalysts bearing N-heterocyclic carbene ligands. Chem. Rev., 2009, 109, 3708-3742.
[23]
Mavila, S.; Gabriel Lemcoff, N. In:N-Heterocyclic Carbenes: Effective Tools for Organometallic Synthesis,; 1st ed.; Nolan, S.P., Ed.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim,. , 2014. pp. 307-340
[24]
Czaban, J.; Torborg, C.; Grela, K. In:Sustainable Catalysis: Challenges and Practices for the Pharmaceutical and Fine Chemical Industries; 1st ed.; Dunn, P.J.; Hii, K.K.; Krische, M.J.; Williams, M.T., Ed.; John Wiley & Sons, Inc.: New York. , 2013. pp. 163-214.
[25]
Buchmeiser, M.R. Polymer-supported well-defined metathesis catalysts. Chem. Rev., 2009, 109, 303-321.
[26]
Monfette, S.; Fogg, D.E. Equilibrium ring-closing metathesis. Chem. Rev., 2009, 109, 3783-3816.
[27]
Han, S-Y.; Chang, S. In:Handbook of Metathesis: Catalyst Development; Grubbs, R.H., Ed.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim. , 2003. Vol. 2, pp. 5-127
[28]
Nolan, S.P.; Clavier, H. Chemoselective olefin metathesis transformations mediated by ruthenium complexes. Chem. Soc. Rev., 2010, 39, 3305-3316.
[29]
Patrick Montgomery, T.; Ahmed, T.S.; Grubbs, R.H. Stereoretentive olefin metathesis: an avenue to kinetic selectivity. Angew. Chem. Int. Ed., 2017, 56, 11024-11036.
[30]
Kress, S.; Blechert, S. Asymmetric catalysts for stereocontrolled olefin metathesis reactions. Chem. Soc. Rev., 2012, 41, 4389-4408.
[31]
Cannon, J.S.; Grubbs, R.H. Alkene chemoselectivity in ruthenium-catalyzed Z-selective olefin metathesis. Angew. Chem. Int. Ed., 2013, 52, 9001-9004.
[32]
Marx, V.M.; Rosebrugh, L.E.; Herbert, M.B.; Grubbs, R.H. Ruthenium in Catalysis; Dixneuf P.; Bruneau C., Ed.; Springer-Verlag: Cham,, 2014. In: Topics in Organometallic Chemistry, Vol. 48, pp. 1-17
[33]
Shahane, S.; Bruneau, C.; Fischmeister, C. Z selectivity: Recent advances in one of the current major challenges of olefin metathesis. ChemCatChem, 2013, 5, 3436-3459.
[34]
Nicolaou, K.C.; Bulger, P.G.; Sarlah, D. Metathesis reactions in total synthesis. Angew. Chem. Int. Ed., 2005, 44, 4490-4527.
[35]
Fürstner, A. Metathesis in total synthesis. Chem. Commun., 2011, 47, 6505-6511.
[36]
Porta, M.; Blechert, S. In:Metathesis in Natural Product Synthesis: Strategies, Substrates and Catalysts;; Cossy, J.; Arseniyadis, S.; Meyer, C., Ed.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim,. , 2010. pp. 313-341
[37]
Schuster, M.; Blechert, S. Olefin metathesis in organic chemistry. Angew. Chem. Int. Ed. Engl., 1997, 36, 2036-2056.
[38]
Kissling, R.M.; Nolan, S.P. In:Encyclopedia of Inorganic and Bioinorganic Chemistry; John Wiley & Sons, Ltd.: New York, 2011, pp. 1-45.
[39]
Lin, Y.A.; Chalker, J.M.; Davis, B.G. Olefin metathesis for site-selective protein modification. ChemBioChem, 2009, 10, 959-969.
[40]
Chikkali, S.; Mecking, S. Refining of plant oils to chemicals by olefin metathesis. Angew. Chem. Int. Ed., 2012, 51, 5802-5808.
[41]
Bielawski, C.W.; Grubbs, R.H. Living ring-opening metathesis polymerization. Prog. Polym. Sci., 2007, 32, 1-29.
[42]
da Silva, L.C.; Rojas, G.; Schulz, M.D.; Wagener, K.B. Acyclic diene metathesis polymerization: history, methods and applications. Prog. Polym. Sci., 2017, 69, 79-107.
[43]
Fink, J.K. Handbook of Engineering and Specialty Thermoplastics: Polyolefins and Styrenics; John Wiley & Sons, Inc.: New York, 2010, pp. 1-39.
[44]
Nuyken, O.; Schneider, M.; Frenzel, U. In: Encyclopedia of Polymer Science and Technology; John Wiley & Sons, Inc.: New York, 2012; pp. 1-57.
[45]
Knall, A-C.; Slugovc, C. In: Olefin Metathesis: Theory and Practice, 1st ed; Grela, K., Ed.; John Wiley & Sons, Inc.: New York, 2014; pp. 269-284.
[46]
Chen, Y.; Abdellatif, M.M.; Nomura, K. Olefin metathesis polymerization: some recent developments in the precise polymerizations for synthesis of advanced materials (by ROMP, ADMET). Tetrahedron, 2018, 74, 619-643.
[47]
Blackwell, H.E.; O’Leary, D.J.; Chatterjee, A.K.; Washenfelder, R.A.; Andrew Bussmann, D.; Grubbs, R.H. New approaches to olefin cross-metathesis. J. Am. Chem. Soc., 2000, 122, 58-71.
[48]
Connon, S.J.; Blechert, S. Recent developments in olefin cross-metathesis. Angew. Chem. Int. Ed., 2003, 42, 1900-1923.
[49]
Chatterjee, A.K. In: Handbook of Metathesis: Catalyst Development; Grubbs, R.H., Ed.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim. , 2003. Vol. 2, pp. 246-295
[50]
Chatterjee, A.K.; Choi, T-L.; Sanders, D.P.; Grubbs, R.H. A general model for selectivity in olefin cross metathesis. J. Am. Chem. Soc., 2003, 125, 11360-11370.
[51]
Prunet, J. Application of olefin cross-metathesis to the synthesis of biologically active natural products. Curr. Top. Med. Chem., 2005, 5, 1559-1577.
[52]
Aljarilla, A.; Cristóbal López, J.; Plumet, J. Metathesis reactions of carbohydrates: recent highlights in cross-metathesis. Eur. J. Org. Chem., 2010, 6123-6143.
[53]
Miao, X.; Dixneuf, P.H.; Fischmeister, C.; Bruneau, C. A green route to nitrogen-containing groups: the acrylonitrile cross-metathesis and applications to plant oil derivatives. Green Chem., 2011, 13, 2258-2271.
[54]
Marmo, J.C.; Wagener, K.B. Acyclic diene metathesis (ADMET) depolymerization. Synthesis of mass-exact telechelic polybutadiene oligomers. Macromolecules, 1993, 26, 2137-2138.
[55]
Hillmyer, M.A.; Nguyen, S.T.; Grubbs, R.H. Utility of a ruthenium metathesis catalyst for the preparation of end-functionalized polybutadiene. Macromolecules, 1997, 30, 718-721.
[56]
Herbert, M.B.; Grubbs, R.H. Z-selective cross metathesis with ruthenium catalysts: Synthetic applications and mechanistic implications. Angew. Chem. Int. Ed., 2015, 54, 5018-5024.
[57]
Meek, S.J.; O’Brien, R.V.; Llaveria, J.; Schrock, R.R.; Hoveyda, A.H. Catalytic Z-selective olefin cross-metathesis for natural product synthesis. Nature, 2011, 471, 461-466.
[58]
Koh, M.J.; Nguyen, T.T.; Zhang, H.; Schrock, R.R.; Hoveyda, A.H. Direct synthesis of Z-alkenyl halides through catalytic cross-metathesis. Nature, 2016, 531, 459-465.
[59]
Fürstner, A.; Thiel, O.R.; Ackermann, L.; Schanz, H-J.; Nolan, S.P. Ruthenium carbene complexes with N,N′-bis(mesityl)imidazol-2-ylidene ligands: RCM catalysts of extended scope. J. Org. Chem., 2000, 65, 2204-2207.
[60]
Choi, T-L.; Grubbs, R.H. Tandem ring-closing metathesis reaction with a ruthenium catalyst containing a N-heterocyclic ligand. Chem. Commun., 2001, 2648-2649.
[61]
Lee, C.W.; Grubbs, R.H. Formation of macrocycles via ring-closing olefin metathesis. J. Org. Chem., 2001, 66, 7155-7158.
[62]
Morgan, J.P.; Morrill, C.; Grubbs, R.H. Selective ring opening cross metathesis of cyclooctadiene and trisubstituted cycloolefins. Org. Lett., 2002, 4, 67-70.
[63]
Lee, C.W.; Choi, T-L.; Grubbs, R.H. Ring expansion via olefin metathesis. J. Am. Chem. Soc., 2002, 124, 3224-3225.
[64]
Chatterjee, A.K.; Morgan, J.P.; Scholl, M.; Grubbs, R.H. Synthesis of functionalized olefins by cross and ring-closing metatheses. J. Am. Chem. Soc., 2000, 122, 3783-3784.
[65]
Choi, T-L.; Lee, C.W.; Chatterjee, A.K.; Grubbs, R.H. Olefin metathesis involving ruthenium enoic carbene complexes. J. Am. Chem. Soc., 2001, 123, 10417-10418.
[66]
Rybak, A.; Fokou, P.A.; Meier, M.A.R. Metathesis as a versatile tool in oleochemistry. Eur. J. Lipid Sci. Technol., 2008, 110, 797-804.
[67]
Meier, M.A.R. Metathesis with oleochemicals: New approaches for the utilization of plant oils as renewable resources in polymer science. Macromol. Chem. Phys., 2009, 210, 1073-1079.
[68]
Sinclair, F.; Chen, L.; Greenland, B.W.; Shaver, M.P. Installing multiple functional groups on biodegradable polyesters via post-polymerization olefin cross-metathesis. Macromolecules, 2016, 49, 6826-6834.
[69]
Sinclair, F.; Alkattan, M.; Prunet, J.; Shaver, M.P. Olefin cross metathesis and ring-closing metathesis in polymer chemistry. Polym. Chem., 2017, 8, 3385-3398.
[70]
Morrison, S.D.; Liskamp, R.M.J.; Prunet, J. Tailoring polyethers for post-polymerization functionalization by cross metathesis. Org. Lett., 2018, 20, 2253-2256.
[71]
Schulz, M.D.; Ford, R.R.; Wagener, K.B. Insertion metathesis depolymerization. Polym. Chem., 2013, 4, 3656-3658.
[72]
Hawker, C.J.; Wooley, K.L. The convergence of synthetic organic and polymer chemistries. Science, 2005, 309, 1200-1205.
[73]
Dong, Y.; Matson, J.B.; Edgar, K.J. Olefin cross-metathesis in polymer and polysaccharide chemistry: A review. Biomacromolecules, 2017, 18, 1661-1676.
[74]
Otsuka, H.; Muta, T.; Sakada, M.; Maeda, T.; Takahara, A. Scrambling reaction between polymers prepared by step-growth and chain-growth polymerizations: macromolecular cross-metathesis between 1,4-polybutadiene and olefin-containing polyester. Chem. Commun., 2009, 1073-1075.
[75]
Maeda, T.; Kamimura, S.; Ohishi, T.; Takahara, A.; Otsuka, H. Synthesis of polyethylene/polyester copolymers through main chain exchange reactions via olefin metathesis. Polymer, 2014, 55, 6245-6251.
[76]
Ohishi, T.; Suyama, K.; Kamimura, S.; Sakada, M.; Imato, K.; Kawahara, S.; Takahara, A.; Otsuka, H. Metathesis-driven scrambling reactions between polybutadiene or naturally occurring polyisoprene and olefin-containing polyurethane. Polymer, 2015, 78, 145-153.
[77]
Gringolts, M.L.; Denisova, Yu.I.; Shandryuk, G.A.; Krentsel, L.B.; Litmanovich, A.D.; Finkelshtein, E.Sh.; Kudryavtsev, Y.V. Synthesis of norbornene-cyclooctene copolymers by the cross-metathesis of polynorbornene with polyoctenamer. RSC Advances, 2015, 5, 316-319.
[78]
Choi, T-L.; Rutenberg, I.M.; Grubbs, R.H. Synthesis of A,B-alternating copolymers by ring-opening-insertion-metathesis polymerization. Angew. Chem. Int. Ed., 2002, 41, 3839-3841.
[79]
Demel, S.; Slugovc, C.; Stelzer, F.; Fodor-Csorba, K.; Galli, G. Alternating diene metathesis polycondensation (ALTMET) - a versatile tool for the preparation of perfectly alternating AB copolymers. Macromol. Rapid Commun., 2003, 24, 636-641.
[80]
Schulz, M.D.; Wagener, K.B. Solvent effects in alternating ADMET polymerization. ACS Macro Lett., 2012, 1, 449-451.
[81]
Ding, L.; Xu, M.; Wang, J.; Liao, Y.; Qiu, J. Controlled synthesis of azobenzene functionalized homo and copolymers via direct acyclic diene metathesis polymerization. Polymer, 2014, 55, 1681-1687.
[82]
Ding, L.; Zheng, X.Q.; Lu, R.; An, J.; Qiu, J. Perfectly AB-alternating copolymers via alternating diene metathesis polymerization: One-step synthesis, characterization and properties. Polym. Int., 2014, 63, 997-1002.
[83]
Lee, H.K.; Bang, K.T.; Hess, A.; Grubbs, R.H.; Choi, T.L. Multiple olefin metathe0sis polymerization that combines all three olefin metathesis transformations: Ring-opening, ring-closing, and cross metathesis. J. Am. Chem. Soc., 2015, 137, 9262-9265.
[84]
Li, Z-L.; Zeng, F-R.; Ma, J-M.; Sun, L-H.; Zeng, Z.; Jiang, H. Precision aliphatic polyesters with alternating microstructures via cross-metathesis polymerization: an event of sequence control. Macromol. Rapid Commun., 2017, 38, 1700050.
[85]
Zeng, F-R.; Ma, J-M.; Sun, L-H.; Zeng, Z.; Jiang, H.; Li, Z-L. Optically active precision aliphatic polyesters via cross-metathesis polymerization. Macromol. Chem. Phys., 2018, 219, 1800031.
[86]
Winkler, M.; de Espinosa, L.M.; Barner-Kowollik, C.; Meier, M.A.R. A new approach for modular polymer-polymer conjugations via heck coupling. Chem. Sci., 2012, 3, 2607-2615.
[87]
Winkler, M.; Mueller, J.O.; Oehlenschlaeger, K.K.; de Espinosa, L.M.; Meier, M.A.R.; Barner-Kowollik, C. Highly orthogonal functionalization of ADMET polymers via photo-induced Diels-Alder reactions. Macromolecules, 2012, 45, 5012-5019.
[88]
Ding, L.; Wang, C.; Lin, L.; Zhu, Z. One-pot sequential ring-opening metathesis polymerization and acyclic diene metathesis polymerization synthesis of unsaturated block polyphosphoesters. Macromol. Chem. Phys., 2015, 216, 761-769.
[89]
Sehlinger, A.; de Espinosa, L.M.; Meier, M.A.R. Synthesis of diverse asymmetric α,ω-dienes via the Passerini three-component reaction for head-to-tail ADMET polymerization. Macromol. Chem. Phys., 2013, 214, 2821-2828.
[90]
Ding, L.; Lu, R.; An, J.; Zheng, X.; Qiu, J. Cyclic polyphosphoesters synthesized by acyclic diene metathesis polymerization and ring closing metathesis. React. Funct. Polym., 2013, 73, 1242-1248.
[91]
Ding, L.; Song, W.; Jiang, R.; Zhu, L. Macrocycle-based topological azo-polymers: facile synthesis and unusual photoresponsive properties. Polym. Chem., 2017, 8, 7133-7142.
[92]
de Espinosa, L.M.; Meier, M.A.R. Synthesis of star- and block-copolymers using ADMET: Head-to-tail selectivity during step-growth polymerization. Chem. Commun., 2011, 47, 1908-1910.
[93]
de Espinosa, L.M.; Winkler, M.; Meier, M.A.R. Acyclic diene metathesis polymerization and Heck polymer-polymer conjugation for the synthesis of star-shaped block copolymers. Macromol. Rapid Commun., 2013, 34, 1381-1386.
[94]
Unverferth, M.; Meier, M.A.R. Tuning the polarity of ADMET derived star-shaped polymers via thiol-ene chemistry. Polymer, 2014, 55, 5571-5575.
[95]
Qiu, J.; Zhang, J.; Yu, F.; Wei, J.; Ding, L. Novel ABC miktoarm star terpolyphosphoesters: facile construction and high-flame retardant property. J. Polym. Sci.Part A Polym. Chem., 2016, 54, 692-701.
[96]
Ding, L.; Wei, J.; Qiu, J.; Wang, J.; Zhu, Z. Star-shaped polyphosphoesters with reactive end groups synthesized via acyclic diene metathesis polymerization and their transformation to nanostructures. RSC Advances, 2014, 4, 22342-22349.
[97]
Ding, L.; Wang, C.; Jiang, R.; Wang, L.; Song, W. Preparation of small and photoresponsive polymer nanoparticles by intramolecular crosslinking of reactive star azo-polymers. React. Funct. Polym., 2016, 109, 56-63.
[98]
Ding, L.; Li, J.; Li, T.; Zhang, L.; Song, W. Linear, Y-shaped, and H-shaped amphiphilic azobenzene copolymers: facile synthesis and topological effect on self-assembly and photoresponsive property. React. Funct. Polym., 2017, 121, 15-22.
[99]
Ding, L.; Qiu, J.; Li, J.; Wang, C.; Wang, L. Novel photoresponsive linear, graft, and comb-like copolymers with azobenzene chromophores in the main-chain and/or side-chain: facile one-pot synthesis and photoresponse properties. Macromol. Rapid Commun., 2015, 36, 1578-1584.
[100]
Ding, L.; Qiu, J.; Wei, J.; Zhu, Z. Convenient divergent synthesis of linear-dendron block polyphosphoesters via acyclic diene metathesis polymerization. Polym. Chem., 2014, 5, 4285-4292.
[101]
Yan, D.; Gao, C.; Frey, H. Hyperbranched Polymers: Synthesis, Properties, and Applications; John Wiley & Sons: Hoboken, New Jersey, 2011.
[102]
Gorodetskaya, I.A.; Choi, T-L.; Grubbs, R.H. Hyperbranched macromolecules via olefin metathesis. J. Am. Chem. Soc., 2007, 129, 12672-12673.
[103]
Gorodetskaya, I.A.; Gorodetsky, A.A.; Vinogradova, E.V.; Grubbs, R.H. Functionalized hyperbranched polymers via olefin metathesis. Macromolecules, 2009, 42, 2895-2898.
[104]
Ding, L.; Zhang, L.; Han, H.; Huang, W.; Song, C.; Xie, M.; Zhang, Y. Hyperbranched azo-polymers synthesized by acyclic diene metathesis polymerization of an AB2 monomer. Macromolecules, 2009, 42, 5036-5042.
[105]
Ding, L.; Xie, M.; Yang, D.; Song, C. Efficient synthesis of long-chain highly branched polymers via one-pot tandem ring-opening metathesis polymerization and acyclic diene metathesis polymerization. Macromolecules, 2010, 43, 10336-10342.
[106]
Ding, L.; Yang, G.; Xie, M.; Gao, D.; Yu, J.; Zhang, Y. More insight into tandem ROMP and ADMET polymerization for yielding reactive long-chain highly branched polymers and their transformation to functional polymer nanoparticles. Polymer, 2012, 53, 333-341.
[107]
Xie, M.; Ding, L.; You, Z.; Gao, D.; Yang, G.; Han, H. Robust hybrid nanostructures comprising gold and thiol-functionalized polymer nanoparticles: facile preparation, diverse morphologies and unique properties. J. Mater. Chem., 2012, 22, 14108-14118.
[108]
Wang, N.; Ding, L. Cyclodextrin-based hyperbranched polymers by acyclic diene metathesis polymerization of an ABn monomer: molecule design, synthesis, and characterization. J. Polym. Res., 2012, 19, 9863.
[109]
Ding, L.; Qiu, J.; Lu, R.; Zheng, X.; An, J. Hyperbranched polyphosphoesters with reactive end groups synthesized via acyclic diene metathesis polymerization and their transformation to crosslinked nanoparticles. J. Polym. Sci.Part A Polym. Chem., 2013, 51, 4331-4340.
[110]
Ding, L.; Lin, L.; Wang, C.; Qiu, J.; Zhu, Z. Facile synthesis of linear-hyperbranched polyphosphoesters via one-pot tandem ROMP and ADMET polymerization and their transformation to architecturally defined nanoparticles. J. Polym. Sci.Part A Polym. Chem., 2015, 53, 964-972.
[111]
Zeng, F.R.; Ma, J.M.; Sun, L.H.; Zeng, Z.; Jiang, H.; Li, Z.L. Hyperbranched aliphatic polyester via cross-metathesis polymerization: Synthesis and postpolymerization modification. Macromol. Rapid Commun., 2018, 39, 1700658.
[112]
Newkome, G.R.; Moorefiled, C.N.; Vögtle, F. Dendrimers and Dendrons: Concepts, Synthesis, Applications; VCH: Weinheim, Germany, 2001.
[113]
Kreye, O.; Kugele, D.; Faust, L.; Meier, M.A.R. Divergent dendrimer synthesis via the Passerini three-component reaction and olefin cross-metathesis. Macromol. Rapid Commun., 2014, 35, 317-322.
[114]
Lutz, J-F.; Lehn, J-M.; Meijer, E.W.; Matyjaszewski, K. From precision polymers to complex materials and systems. Nat. Rev. Mater., 2016, 1, 16024.
[115]
Mathers, R.T.; Meier, M.A.R. Green Polymerization Methods: Renewable Starting Materials, Catalysis and Waste Reduction; WILEY-VCH: Boschstr. 12, 69469 Weinheim, Germany. , 2011.
[116]
Cheng, H.N.; Gross, R.A.; Smith, P.B. Green Polymer Chemistry: Biobased Materials and Biocatalysis; American Chemical Society: Washington, DC, USA, 2015.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy