Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Research Article

High Surface Area Mesoporous Silica for Hydrogen Sulfide Effective Removal

Author(s): Gomaa Abdelgawad Mohammed Ali*, Ahmed Barhoum, Vinod Kumar Gupta, Amr Ahmed Nada, Heba Hassan El-Maghrabi, Ramesh Kanthasamy , Essam Ramadan Shaaban, Hamed Algarni and Kwok Feng Chong*

Volume 16, Issue 2, 2020

Page: [226 - 234] Pages: 9

DOI: 10.2174/1573413715666181205122307

Price: $65

Abstract

Background: Removal of sulfur-containing compounds from the aqueous environment is necessary as these compounds pose potential risks to human health, hygienic management and bring great economic losses due to fouling of resin bed and corrosion of process equipment.

Objective: This work aims to study the H2S removal efficiency using high surface area mesoporous silica (MCM–41).

Methods: In this study, mesoporous silica (MCM–41) with a high surface area of 1270 m2/g and high porosity of 69% was prepared by sol-gel technique.

Results: The obtained MCM–41 has exhibited a superior performance in adsorbing H2S from wastewater with a maximum adsorption capacity of 52.14 mg/g. The adsorption isotherm and kinetics of the current adsorption process are best represented by Freundlich isotherm and pseudo-secondorder models, respectively.

Conclusion: Therefore, MCM–41 is an excellent adsorbent for wastewater treatment applications.

Keywords: Mesoporous silica, sol-gel, hydrogen sulfide, adsorption, wastewater treatment, hygienic management.

Graphical Abstract

[1]
Chen, Q.; Wang, J.; Liu, X.; Li, Z.; Qiao, W.; Long, D.; Ling, L. Structure-dependent catalytic oxidation of H2S over Na2CO3 impregnated carbon aerogels. Microporous Mesoporous Mater., 2011, 142, 641-648.
[http://dx.doi.org/10.1016/j.micromeso.2011.01.011]
[2]
Habeeb, O.A.; Ramesh, K.; Ali, G.A.M.; Sethupathi, S.; Yunus, R.M. Hydrogen sulfide emission sources, regulations, and removal techniques: A review. Rev. Chem. Eng., 2017, 34(6), 837-854.
[http://dx.doi.org/10.1515/revce-2017-0004]
[3]
Lambert, T.W.; Goodwin, V.M.; Stefani, D.; Strosher, L. Hydrogen sulfide (H2S) and sour gas effects on the eye. A historical perspective. Sci. Total Environ., 2006, 367(1), 1-22.
[http://dx.doi.org/10.1016/j.scitotenv.2006.01.034] [PMID: 16650463]
[4]
Sydney, R.; Esfandi, E.; Surapaneni, S. Control concrete sewer corrosion via the crown spray process. Water Environ. Res., 1996, 68(3), 338-347.
[http://dx.doi.org/10.2175/106143096X127785]
[5]
Vollertsen, J.; Nielsen, A.H.; Jensen, H.S.; Wium-Andersen, T.; Hvitved-Jacobsen, T. Corrosion of concrete sewers--the kinetics of hydrogen sulfide oxidation. Sci. Total Environ., 2008, 394(1), 162-170.
[http://dx.doi.org/10.1016/j.scitotenv.2008.01.028] [PMID: 18281080]
[6]
Ma, S.; Noble, A.; Butcher, D.; Trouwborst, R.E.; Luther, G.W. Removal of H2S via an iron catalytic cycle and iron sulfide precipitation in the water column of dead end tributaries. Estuar. Coast. Shelf Sci., 2006, 70(3), 461-472.
[http://dx.doi.org/10.1016/j.ecss.2006.06.033]
[7]
Gerçel, Ö.; Koparal, A.S.; Öğütveren, Ü.B. Removal of hydrogen sulfide by electrochemical method with a batchwise operation. Separ. Purif. Tech., 2008, 62(3), 654-658.
[http://dx.doi.org/10.1016/j.seppur.2008.03.019]
[8]
Chatterjee, G.; Houde, A.A.; Stern, S.A. Poly(ether urethane) and poly(ether urethane urea) membranes with high H2S/CH4 selectivity. J. Membr. Sci., 1997, 135(1), 99-106.
[http://dx.doi.org/10.1016/S0376-7388(97)00134-8]
[9]
Portela, R.; Canela, M.C.; Sánchez, B.; Marques, F.C.; Stumbo, A.M.; Tessinari, R.F.; Coronado, J.M.; Suárez, S.H. 2S photodegradation by TiO2/M-MCM-41 (M = Cr or Ce): Deactivation and by-product generation under UV-A and visible light. Appl. Catal. B, 2008, 84(3-4), 643-650.
[http://dx.doi.org/10.1016/j.apcatb.2008.05.020]
[10]
Omri, I.; Bouallagui, H.; Aouidi, F.; Godon, J-J.; Hamdi, M.H. 2S gas biological removal efficiency and bacterial community diversity in biofilter treating wastewater odor. Bioresour. Technol., 2011, 102(22), 10202-10209.
[http://dx.doi.org/10.1016/j.biortech.2011.05.094] [PMID: 21945209]
[11]
Habeeb, O.A.; Ramesh, K.; Ali, G.A.M.; Yunus, R.M. Isothermal modelling based experimental study of dissolved hydrogen sulfide adsorption from waste water using eggshell based activated carbon. Malays. J. Anal. Sci., 2017, 21(2), 334-345.
[http://dx.doi.org/10.17576/mjas-2017-2102-08]
[12]
Louhichi, S.; Ghorbel, A.; Chekir, H.; Trabelsi, N.; Khemakhem, S. Properties of modified crude clay by iron and copper nanoparticles as potential hydrogen sulfide adsorption. Appl. Clay Sci., 2016, 127, 123-128.
[http://dx.doi.org/10.1016/j.clay.2016.04.007]
[13]
Sadegh, H.; Ali, G.A.M.; Nia, H.J.; Mahmoodi, Z. Nanomaterial Surface Modifications for Enhancement of the Pollutant Adsorption from Wastewater, in Nanotechnology Applications in Environmental Engineering., 2019, IGI Global: Hershey, PA, USA. pp. 143-170.
[http://dx.doi.org/10.4018/978-1-5225-5745-6.ch007]
[14]
Habeeb, O.A.; Ramesh, K.; Ali, G.A.M.; Yunus, R.M. Experimental design technique on removal of hydrogen sulfide using CaO-eggshells dispersed onto palm kernel shell activated carbon: Experiment, optimization, equilibrium and kinetic studies. J. Wuhan Univ. Technol.-. Mater. Sci. Ed., 2017, 32(2), 305-320.
[15]
Habeeb, O.A.; Ramesh, K.; Ali, G.A.M.; Yunus, R.M. Low-cost and eco-friendly activated carbon from modified palm kernel shell for hydrogen sulfide removal from wastewater: Adsorption and kinetic studies. Desalination Water Treat., 2017, 84, 205-214.
[http://dx.doi.org/10.5004/dwt.2017.21196]
[16]
Sadegh, H.; Ali, G.A.M. Potential Applications of Nanomaterials in Wastewater Treatment: Nanoadsorbents Performance, in Advanced Treatment Techniques for Industrial Wastewater, Athar, H.; Sirajuddin, A. (Eds.). 2019, IGI Global: Hershey, PA, USA. pp. 51- 61.
[http://dx.doi.org/10.4018/978-1-5225-5754-8.ch004]
[17]
Xue, Q.; Liu, Y. Removal of minor concentration of H2S on MDEA-modified SBA-15 for gas purification. J. Ind. Eng. Chem., 2012, 18(1), 169-173.
[http://dx.doi.org/10.1016/j.jiec.2011.11.005]
[18]
Belmabkhout, Y.; De Weireld, G.; Sayari, A. Amine-bearing mesoporous silica for CO(2) and H(2)S removal from natural gas and biogas. Langmuir, 2009, 25(23), 13275-13278.
[http://dx.doi.org/10.1021/la903238y] [PMID: 19874010]
[19]
Abbasi, A.; Sardroodi, J.J. Adsorption and dissociation of H2S on nitrogen-doped TiO2 anatase nanoparticles: Insights from DFT computations. Surf. Interfaces, 2017, 8, 15-27.
[http://dx.doi.org/10.1016/j.surfin.2017.04.004]
[20]
Montes, D.; Tocuyo, E.; González, E.; Rodríguez, D.; Solano, R.; Atencio, R.; Ramos, M.A.; Moronta, A. Reactive H2S chemisorption on mesoporous silica molecular sieve-supported CuO or ZnO. Microporous Mesoporous Mater., 2013, 168, 111-120.
[http://dx.doi.org/10.1016/j.micromeso.2012.09.018]
[21]
Sigot, L.; Ducom, G.; Germain, P. Adsorption of hydrogen sulfide (H2S) on zeolite (Z): Retention mechanism. Chem. Eng. J., 2016, 287, 47-53.
[http://dx.doi.org/10.1016/j.cej.2015.11.010]
[22]
Dinker, M.K.; Kulkarni, P.S. Recent advances in silica-based materials for the removal of hexavalent chromium: A review. J. Chem. Eng. Data, 2015, 60(9), 2521-2540.
[http://dx.doi.org/10.1021/acs.jced.5b00292]
[23]
Ho, K.Y.; McKay, G.; Yeung, K.L. Selective adsorbents from ordered mesoporous silica. Langmuir, 2003, 19(7), 3019-3024.
[http://dx.doi.org/10.1021/la0267084]
[24]
Dhage, P.; Samokhvalov, A.; Repala, D.; Duin, E.C.; Bowman, M.; Tatarchuk, B.J. Copper-promoted ZnO/SiO2 regenerable sorbents for the room temperature removal of H2S from reformate gas streams. Ind. Eng. Chem. Fundam., 2010, 49(18), 8388-8396.
[http://dx.doi.org/10.1021/ie100209a]
[25]
Wan, Z.Y.; Liu, B.S.; Zhang, F.M.; Zhao, X.H. Characterization and performance of LaxFeyOz/MCM-41 sorbents during hot coal gas desulfurization. Chem. Eng. J., 2011, 171(2), 594-602.
[http://dx.doi.org/10.1016/j.cej.2011.04.035]
[26]
Eslami, M.; Dekamin, M.G.; Motlagh, L.; Maleki, A. MCM-41 mesoporous silica: A highly efficient and recoverable catalyst for rapid synthesis of α-aminonitriles and imines. Green Chem. Lett. Rev., 2018, 11(1), 36-46.
[http://dx.doi.org/10.1080/17518253.2017.1421269]
[27]
Habeeb, O.A.; Ramesh, K.; Ali, G.A.M.; Yunus, R.M.; Thanusha, T.K.; Olalere, O.A. Modeling and optimization for H2S adsorption from wastewater using coconut shell based activated carbon. Aust. J. Basic Appl. Sci., 2016, 10(17), 136-147.
[28]
Agarwal, S.; Sadegh, H.; Monajjemi, M.; Hamdy, A.S.; Ali, G.A.M.; Memar, A.O.H.; Shahryari-Ghoshekandi, R.; Tyagi, I.; Gupta, V.K. Efficient removal of toxic bromothymol blue and methylene blue from wastewater by polyvinyl alcohol. J. Mol. Liq., 2016, 218, 191-197.
[http://dx.doi.org/10.1016/j.molliq.2016.02.060]
[29]
Yang, H.; Deng, Y.; Du, C.; Jin, S. Novel synthesis of ordered mesoporous materials Al-MCM-41 from bentonite. Appl. Clay Sci., 2010, 47(3), 351-355.
[http://dx.doi.org/10.1016/j.clay.2009.11.050]
[30]
Patterson, A. The Scherrer formula for X-ray particle size determination. Phys. Rev., 1939, 56(10), 978-982.
[http://dx.doi.org/10.1103/PhysRev.56.978]
[31]
Meléndez-Ortiz, H.; García-Cerda, L.; Olivares-Maldonado, Y.; Castruita, G.; Mercado-Silva, J.; Perera-Mercado, Y. Preparation of spherical MCM-41 molecular sieve at room temperature: Influence of the synthesis conditions in the structural properties. Ceram. Int., 2012, 38(8), 6353-6358.
[http://dx.doi.org/10.1016/j.ceramint.2012.05.007]
[32]
Nascimento, G.; Duarte, M.; Barbosa, C. Cerium incorporated into a mesoporous molecular sieve (MCM-41). Braz. J. Chem. Eng., 2016, 33(3), 541-547.
[http://dx.doi.org/10.1590/0104-6632.20160333s20150132]
[33]
Fouad, O.A.; Makhlouf, S.A.; Ali, G.A.M.; El-Sayed, A.Y. Cobalt/silica nanocomposite via thermal calcination-reduction of gel precursors. Mater. Chem. Phys., 2011, 128(1-2), 70-76.
[http://dx.doi.org/10.1016/j.matchemphys.2011.02.072]
[34]
Ali, G.A.M.; Fouad, O.A.; Makhlouf, S.A.; Yusoff, M.M.; Chong, K.F. Co3O4/SiO2 nanocomposites for supercapacitor application. J. Solid State Electrochem., 2014, 18(9), 2505-2512.
[http://dx.doi.org/10.1007/s10008-014-2510-3]
[35]
Ali, G.A.M.; Fouad, O.A.; Makhlouf, S.A. Structural, optical and electrical properties of sol-gel prepared mesoporous Co3O4/SiO2 nanocomposites. J. Alloys Compd., 2013, 579, 606-611.
[http://dx.doi.org/10.1016/j.jallcom.2013.07.095]
[36]
Cheah, W-K.; Sim, Y-L.; Yeoh, F-Y. Amine-functionalized mesoporous silica for urea adsorption. Mater. Chem. Phys., 2016, 175, 151-157.
[http://dx.doi.org/10.1016/j.matchemphys.2016.03.007]
[37]
Li, C. Identifying the isolated transition metal ions/oxides in molecular sieves and on oxide supports by UV resonance Raman spectroscopy. J. Catal., 2003, 216(1-2), 203-212.
[http://dx.doi.org/10.1016/S0021-9517(02)00107-0]
[38]
Zhang, Z.F.; Liu, B.S.; Wang, F.; Wang, W.S.; Xia, C.; Zheng, S.; Amin, R. Hydrogen sulfide removal from hot coal gas by various mesoporous silica supported Mn2O3 sorbents. Appl. Surf. Sci., 2014, 313, 961-969.
[http://dx.doi.org/10.1016/j.apsusc.2014.06.116]
[39]
Fouad, O.A.; Ali, G.A.M.; El-Erian, M.A.I.; Makhlouf, S.A. Humidity sensing properties of cobalt oxide/silica nanocomposites prepared via sol-gel and related routes. Nano, 2012, 7, 1250038-1250049.
[http://dx.doi.org/10.1142/S1793292012500385]
[40]
Zhang, Y.; Liu, B.S.; Zhang, F.M.; Zhang, Z.F. Formation of (FexMn(2-x))O3 solid solution and high sulfur capacity properties of Mn-based/M41 sorbents for hot coal gas desulfurization. J. Hazard. Mater., 2013, 248-249, 81-88.
[http://dx.doi.org/10.1016/j.jhazmat.2012.12.053] [PMID: 23337625]
[41]
Tonkov, E.I.U. High Pressure Phase Transformations: A Handbook; Gordon and Breach Science Publishers, 1992.
[42]
Abdel Ghafar, H.H.; Ali, G.A.M.; Fouad, O.A.; Makhlouf, S.A. Enhancement of adsorption efficiency of methylene blue on Co3O4/SiO2 nanocomposite. Desalination Water Treat., 2015, 53, 2980-2989.
[http://dx.doi.org/10.1080/19443994.2013.871343]
[43]
Sadegh, H.; Ali, G.A.M.; Gupta, V.K.; Makhlouf, A.S.H.; Shahryari-ghoshekandi, R.; Nadagouda, M.N.; Sillanpää, M.; Megiel, E. The role of nanomaterials as effective adsorbents and their applications in wastewater treatment. J. Nanostruct. Chem., 2017, 7(1), 1-14.
[http://dx.doi.org/10.1007/s40097-017-0219-4]
[44]
Sadegh, H.; Ali, G.A.M.; Abbasi, Z.; Nadagoud, M.N. Adsorption of ammonium ions onto multi-walled carbon nanotubes. Stud. Univ. Babes-Bolyai Chem., 2017, 62(2), 233-245.
[http://dx.doi.org/10.24193/subbchem.2017.2.18]
[45]
Sadegh, H.; Ali, G.A.M.; Makhlouf, A.S.H.; Chong, K.F.; Alharbi, N.S.; Agarwal, S.; Gupta, V.K. MWCNTs-Fe3O4 nanocomposite for Hg(II) high adsorption efficiency. J. Mol. Liq., 2018, 258, 345-353.
[http://dx.doi.org/10.1016/j.molliq.2018.03.012]
[46]
Wu, S-P.; Dai, X-Z.; Kan, J-R.; Shilong, F-D.; Zhu, M-Y. Fabrication of carboxymethyl chitosan–hemicellulose resin for adsorptive removal of heavy metals from wastewater. Chin. Chem. Lett., 2017, 28(3), 625-632.
[http://dx.doi.org/10.1016/j.cclet.2016.11.015]
[47]
Foo, K.Y.; Hameed, B.H. Insights into the modeling of adsorption isotherm systems. Chem. Eng. J., 2010, 156, 2-10.
[http://dx.doi.org/10.1016/j.cej.2009.09.013]
[48]
Günay, A.; Arslankaya, E.; Tosun, I. Lead removal from aqueous solution by natural and pretreated clinoptilolite: adsorption equilibrium and kinetics. J. Hazard. Mater., 2007, 146(1-2), 362-371.
[http://dx.doi.org/10.1016/j.jhazmat.2006.12.034] [PMID: 17261347]
[49]
Seaf Elnasr, T.A.; Soliman, M.H.; Ayash, M.A.A. Modified hydroxyapatite adsorbent for removal of iron dissolved in water wells in Sohag, Egypt. Chem. Adv. Mater., 2017, 2(1), 1-13.
[50]
Seyed Arabi, S.M.; Lalehloo, R.S.; Olyai, M.R.T.B.; Ali, G.A.M.; Sadegh, H. Removal of congo red azo dye from aqueous solution by ZnO nanoparticles loaded on multiwall carbon nanotubes. Physica E, 2019, 106, 150-155.
[http://dx.doi.org/10.1016/j.physe.2018.10.030]
[51]
Gupta, V.K.; Agarwal, S.; Sadegh, H.; Ali, G.A.M.; Bharti, A.K.; Makhlouf, A.S.H. Facile route synthesis of novel graphene oxide-β-cyclodextrin nanocomposite and its application as adsorbent for removal of toxic bisphenol A from the aqueous phase. J. Mol. Liq., 2017, 237, 466-472.
[http://dx.doi.org/10.1016/j.molliq.2017.04.113]
[52]
Seliem, M.K.; Komarneni, S.; Abu Khadra, M.R. Phosphate removal from solution by composite of MCM-41 silica with rice husk: Kinetic and equilibrium studies. Microporous Mesoporous Mater., 2016, 224, 51-57.
[http://dx.doi.org/10.1016/j.micromeso.2015.11.011]
[53]
Kang, J-K.; Park, J-A.; Kim, J-H.; Lee, C-G.; Kim, S-B. Surface functionalization of mesoporous silica MCM-41 with 3-aminopropyltrimethoxysilane for dye removal: Kinetic, equilibrium, and thermodynamic studies. Desalination Water Treat., 2016, 57(15), 7066-7078.
[http://dx.doi.org/10.1080/19443994.2015.1014856]
[54]
Lee, C-K.; Liu, S-S.; Juang, L-C.; Wang, C-C.; Lin, K-S.; Lyu, M-D. Application of MCM-41 for dyes removal from wastewater. J. Hazard. Mater., 2007, 147(3), 997-1005.
[http://dx.doi.org/10.1016/j.jhazmat.2007.01.130] [PMID: 17337117]
[55]
Mirzajani, R.; Pourreza, N.; Zayadi, A.; Malakooti, R.; Mahmoodi, H. Nanoporous calcined MCM-41 silica for adsorption and removal of victoria blue dye from different natural water samples. Desalination Water Treat., 2016, 57(13), 5903-5913.
[http://dx.doi.org/10.1080/19443994.2015.1005690]
[56]
Javadian, H.; Koutenaei, B.B.; Shekarian, E.; Sorkhrodi, F.Z.; Khatti, R.; Toosi, M. Application of functionalized nano HMS type mesoporous silica with N-(2-aminoethyl)-3-aminopropyl methyldimethoxysilane as a suitable adsorbent for removal of Pb (II) from aqueous media and industrial wastewater. J. Saudi Chem. Soc., 2017, 21, S219-S230.
[http://dx.doi.org/10.1016/j.jscs.2014.01.007]
[57]
Lewandowski, D.; Bajerlein, D.; Schroeder, G. Adsorption of hydrogen peroxide on functionalized mesoporous silica surfaces. Struct. Chem., 2014, 25(5), 1505-1512.
[http://dx.doi.org/10.1007/s11224-014-0428-0]
[58]
Haimour, N.; El-Bishtawi, R.; Ail-Wahbi, A. Equilibrium adsorption of hydrogen sulfide onto CuO and ZnO. Desalination, 2005, 181(1), 145-152.
[http://dx.doi.org/10.1016/j.desal.2005.02.017]
[59]
Sandra, F.; Schade, E.; Leistner, M.; Grothe, J.; Kaskel, S. Solvothermal synthesis of a bismuth/zinc mixed oxide material for H2S removal at room temperature: Synthesis, performance, characterization and regeneration ability. Mater. Chem. Phys., 2017, 199, 329-339.
[http://dx.doi.org/10.1016/j.matchemphys.2017.06.063]
[60]
Ozaydin, Z.; Yasyerli, S.; Dogu, G. Synthesis and activity comparison of copper-incorporated MCM-41-type sorbents prepared by one-pot and impregnation procedures for H2S removal. Ind. Eng. Chem. Fundam., 2008, 47(4), 1035-1042.
[http://dx.doi.org/10.1021/ie071039g]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy