[1]
Roux BM, Cheng M-H, Brey EM. Engineering clinically relevant volumes of vascularized bone. J Cell Mol Med 2015; 19: 903-14.
[2]
Li JP, Wang DW, Song QH. Transplantation of erythropoietin gene-transfected umbilical cord mesenchymal stem cells as a treatment for limb ischemia in rats. Genet Mol Res GMR 2015; 14: 19005-15.
[3]
Zhang JC, Zheng GF, Wu L, Ou Yang LY, Li WX. Bone marrow mesenchymal stem cells overexpressing human basic fibroblast growth factor increase vasculogenesis in ischemic rats. Braz J Med Biol Res Rev Bras Pesqui Medicas E Biol 2014; 47: 886-94.
[4]
Makris EA, Gomoll AH, Malizos KN, Hu JC, Athanasiou KA. Repair and tissue engineering techniques for articular cartilage. Nat Rev Rheumatol 2015; 11: 21-34.
[5]
Introna M, Lucchini G, Dander E, et al. Treatment of graft versus host disease with mesenchymal stromal cells: A phase I study on 40 adult and pediatric patients. Biol Blood Marrow Transplant J Am Soc Blood Marrow Transplant 2014; 20: 375-81.
[6]
Jo CH, Lee YG, Shin WH, et al. Intra-articular injection of mesenchymal stem cells for the treatment of osteoarthritis of the knee: a proof-of-concept clinical trial. Stem Cells Dayt Ohio 2014; 32: 1254-66.
[7]
El Omar R, Beroud J, Stoltz J-F, Menu P, Velot E, Decot V. Umbilical cord mesenchymal stem cells: the new gold standard for mesenchymal stem cell-based therapies? Tissue Eng Part B Rev 2014; 20: 523-44.
[8]
Wang Q, Yang Q, Wang Z, et al. Comparative analysis of human mesenchymal stem cells from fetal-bone marrow, adipose tissue, and Warton’s jelly as sources of cell immunomodulatory therapy. Hum Vaccin Immunother 2016; 12: 85.
[10]
Torihashi S, Ho M, Kawakubo Y, et al. Acute and temporal expression of Tumor Necrosis Factor (TNF)-α-stimulated gene 6 product, TSG6, in mesenchymal stem cells creates microenvironments required for their successful transplantation into muscle tissue. J Biol Chem 2015; 290: 22771-81.
[11]
Chen W, Baylink DJ, Brier-Jones J, et al. PDGFB-based stem cell gene therapy increases bone strength in the mouse. Proc Natl Acad Sci USA 2015; 112: E3893-900.
[12]
Madry H, Orth P, Cucchiarini M. Gene therapy for cartilage repair. Cartilage 2011; 2: 201-25.
[13]
Beutel BG, Danna NR, Gangolli R, et al. Evaluation of bone response to synthetic bone grafting material treated with argon-based atmospheric pressure plasma. Mater Sci Eng C Mater Biol Appl 2014; 45: 484-90.
[14]
Muzzarelli RAA, El Mehtedi M, Bottegoni C, Aquili A, Gigante A. Genipin-crosslinked chitosan gels and scaffolds for tissue engineering and regeneration of cartilage and bone. Mar Drugs 2015; 13: 7314-38.
[15]
Xiao T, Guo W, Chen M, et al. Fabrication and In vitro Study of tissue-engineered cartilage scaffold derived from Wharton’s jelly extracellular matrix. BioMed Res Int 2017; 2017: 5839071.
[16]
Daly AC, Pitacco P, Nulty J, Cunniffe GM, Kelly DJ. 3D printed microchannel networks to direct vascularisation during endochondral bone repair. Biomaterials 2018; 162: 34-46.
[17]
Gonzalez-Fernandez T, Tierney EG, Cunniffe GM, O’Brien FJ, Kelly DJ. Gene delivery of TGF-β3 and BMP2 in an MSC-laden alginate hydrogel for articular cartilage and endochondral bone tissue engineering. Tissue Eng Part A 2016; 22: 776-87.
[18]
Jiang J, Fan C-Y, Zeng B-F. Experimental construction of BMP2 and VEGF gene modified tissue engineering bone in vitro. Int J Mol Sci 2011; 12: 1744-55.
[19]
Shao D, Wang C, Sun Y, Cui L. Effects of oral implants with miR-122-modified cell sheets on rat bone marrow mesenchymal stem cells. Mol Med Rep 2018; 17: 1537-44.
[20]
Li K-C, Chang Y-H, Yeh C-L, Hu Y-C. Healing of osteoporotic bone defects by baculovirus-engineered bone marrow-derived MSCs expressing MicroRNA sponges. Biomaterials 2016; 74: 155-66.
[21]
Guo P, Shi Z-L, Liu A, et al. Cartilage oligomeric matrix protein gene multilayers inhibit osteogenic differentiation and promote chondrogenic differentiation of mesenchymal stem cells. Int J Mol Sci 2014; 15: 20117-33.
[22]
Iwai R, Fujiwara M, Wakitani S, Takagi M. Ex vivo cartilage defect model for the evaluation of cartilage regeneration using mesenchymal stem cells. J Biosci Bioeng 2011; 111: 357-64.
[23]
Ikeda Y, Sakaue M, Chijimatsu R, et al. IGF-1 Gene transfer to human synovial MSCs promotes their chondrogenic differentiation potential without induction of the hypertrophic phenotype. Stem Cells Int 2017; 2017: 5804147.
[24]
Li J, Li Y, Ma S, Gao Y, Zuo Y, Hu J. Enhancement of bone formation by BMP-7 transduced MSCs on biomimetic nano-hydroxyapatite/polyamide composite scaffolds in repair of mandibular defects. J Biomed Mater Res A 2010; 95: 973-81.
[25]
Castro-Govea Y, Cervantes-Kardasch VH, Borrego-Soto G, et al. Human bone morphogenetic protein 2-transduced mesenchymal stem cells improve bone regeneration in a model of mandible distraction surgery. J Craniofac Surg 2012; 23: 392-6.
[26]
Chang SC-N, Lin T-M, Chung H-Y, et al. Large-scale bicortical skull bone regeneration using ex vivo replication-defective adenoviral-mediated bone morphogenetic protein-2 gene-transferred bone marrow stromal cells and composite biomaterials. Neurosurgery 2009; 65: 75-81. discussion 81-83.
[27]
Loozen LD, van der Helm YJM, Öner FC, Dhert WJA, Kruyt MC, Alblas J. Bone morphogenetic protein-2 nonviral gene therapy in a goat iliac crest model for bone formation. Tissue Eng Part A 2015; 21: 1672-9.
[28]
Dong S-W, Ying D-J, Duan X-J, et al. Bone regeneration using an acellular extracellular matrix and bone marrow mesenchymal stem cells expressing Cbfa1. Biosci Biotechnol Biochem 2009; 73: 2226-33.
[29]
Wang B, Huang S, Pan L, Jia S. Enhancement of bone formation by genetically engineered human umbilical cord-derived mesenchymal stem cells expressing osterix. Oral Surg Oral Med Oral Pathol Oral Radiol 2013; 116: e221-9.
[30]
Raftery RM, Mencía Castaño I, Chen G, et al. Translating the role of osteogenic-angiogenic coupling in bone formation: Highly efficient chitosan-pDNA activated scaffolds can accelerate bone regeneration in critical-sized bone defects. Biomaterials 2017; 149: 116-27.
[31]
Cao L, Liu X, Liu S, et al. Experimental repair of segmental bone defects in rabbits by angiopoietin-1 gene transfected MSCs seeded on porous β-TCP scaffolds. J Biomed Mater Res B Appl Biomater 2012; 100: 1229-36.
[32]
Cunniffe GM, Gonzalez-Fernandez T, Daly A, et al. Three-dimensional bioprinting of polycaprolactone reinforced gene activated bioinks for bone tissue engineering. Tissue Eng Part A 2017; 23: 891-900.
[33]
Cao L, Yang F, Liu G, et al. The promotion of cartilage defect repair using adenovirus mediated Sox9 gene transfer of rabbit bone marrow mesenchymal stem cells. Biomaterials 2011; 32: 3910-20.
[34]
Yang HN, Park JS, Woo DG, et al. Chondrogenesis of mesenchymal stem cells and dedifferentiated chondrocytes by transfection with SOX Trio genes. Biomaterials 2011; 32: 7695-704.
[35]
Xia W, Jin Y-Q, Kretlow JD, et al. Adenoviral transduction of hTGF-beta1 enhances the chondrogenesis of bone marrow derived stromal cells. Biotechnol Lett 2009; 31: 639-46.
[36]
He C-X, Zhang T-Y, Miao P-H, et al. TGF-β1 gene-engineered mesenchymal stem cells induce rat cartilage regeneration using nonviral gene vector. Biotechnol Appl Biochem 2012; 59: 163-9.
[37]
Li B, Yang J, Ma L, Li F, Tu Z, Gao C. Fabrication of poly(lactide-co-glycolide) scaffold filled with fibrin gel, mesenchymal stem cells, and poly(ethylene oxide)-b-poly(L-lysine)/TGF-β1 plasmid DNA complexes for cartilage restoration in vivo. J Biomed Mater Res A 2013; 101: 3097-108.
[38]
Ivkovic A, Pascher A, Hudetz D, et al. Articular cartilage repair by genetically modified bone marrow aspirate in sheep. Gene Ther 2010; 17: 779-89.
[39]
Gulotta LV, Kovacevic D, Packer JD, Deng XH, Rodeo SA. Bone marrow-derived mesenchymal stem cells transduced with scleraxis improve rotator cuff healing in a rat model. Am J Sports Med 2011; 39: 1282-9.