[1]
Boczkowski, J.; Lanone, S. Potential uses of carbon nanotubes in the medical field: How worried should patients be? Nanomedicine , 2007, 2(4), 407-410.
[2]
Beg, S.; Rizwan, M.; Sheikh, A.M.; Hasnain, M.S.; Anwer, K.; Kohli, K. Advancement in carbon nanotubes: Basics, biomedical applications and toxicity. J. Pharm. Pharmacol., 2011, 63(2), 141-163.
[3]
De Volder, M.F.; Tawfick, S.H.; Baughman, R.H.; Hart, A.J. Carbon nanotubes: Present and future commercial applications. Science, 2013, 339(6119), 535-539.
[4]
Iijima, S. Helical microtubules of graphitic carbon. Nature, 1991, 354(6348), 56-58.
[5]
Amenta, V.; Aschberger, K. Carbon nanotubes: Potential medical applications and safety concerns. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2015, 7(3), 371-386.
[6]
Yang, S.T.; Fernando, K.; Liu, J.H.; Wang, J.; Sun, H.F.; Liu, Y.; Chen, M.; Huang, Y.; Wang, X.; Wang, H. Covalently PEGylated carbon nanotubes with stealth character in vivo. Small, 2008, 4(7), 940-944.
[7]
Liu, Z.; Tabakman, S.; Welsher, K.; Dai, H. Carbon nanotubes in biology and medicine: In vitro and in vivo detection, imaging and drug delivery. Nano Res., 2009, 2(2), 85-120.
[8]
Jones, D.J.; Swarbrick, J.; Boylan, J. Encyclopedia of Pharmaceutical Technology, 2nd ed; Taylor & Francis: New York, 2002.
[10]
National Archives and Records Administration, Code of Federal Regulations, Title 21, Food and Drugs, Food and Drug Administration, Department of Health and Human Services, Part 320, Bioavailability and Bioequivalence Requirements.
[11]
Benet, L.Z.; Galeazzi, R.L. Noncompartmental determination of the steady‐state volume of distribution. J. Pharm. Sci., 1979, 68(8), 1071-1074.
[12]
Rowland, M.; Benet, L.Z.; Graham, G.G. Clearance concepts in pharmacokinetics. J. Pharmacokinet. Biopharm., 1973, 1(2), 123-136.
[13]
Craig, C.R.; Stitzel, R.E. Modern Pharmacology with Clinical Applications, 6th ed; Lippincott Williams & Wilkins: Philadelphia, 2004.
[14]
Fröhlich, E.; Roblegg, E. Models for oral uptake of nanoparticles in consumer products. Toxicology, 2012, 291(1), 10-17.
[15]
Bergin, I.L.; Witzmann, F.A. Nanoparticle toxicity by the gastrointestinal route: Evidence and knowledge gaps. Int. J. Biomed. Nanosci. Nanotechnol., 2013, 3(1-2), 163-210.
[16]
Deng, X.; Jia, G.; Wang, H.; Sun, H.; Wang, X.; Yang, S.; Wang, T.; Liu, Y. Translocation and fate of multi-walled carbon nanotubes in vivo. Carbon, 2007, 45(7), 1419-1424.
[17]
Ito, Y.; Venkatesan, N.; Hirako, N.; Sugioka, N.; Takada, K. Effect of fiber length of carbon nanotubes on the absorption of erythropoietin from rat small intestine. Int. J. Pharm., 2007, 337(1), 357-360.
[18]
Philbrook, N.A.; Walker, V.K.; Afrooz, A.N.; Saleh, N.B.; Winn, L.M. Investigating the effects of functionalized carbon nanotubes on reproduction and development in Drosophila melanogaster and CD-1 mice. Reprod. Toxicol., 2011, 32(4), 442-448.
[19]
Coyuco, J.C.; Liu, Y.; Tan, B-J.; Chiu, G. Functionalized carbon nanomaterials: Exploring the interactions with Caco-2 cells for potential oral drug delivery. Int. J. Nanomedicine, 2011, 6, 2253-2263.
[20]
Wang, H.; Yang, S-T.; Cao, A.; Liu, Y. Quantification of carbon nanomaterials in vivo. Acc. Chem. Res., 2012, 46(3), 750-760.
[21]
Jacobsen, N.R.; Møller, P.; Clausen, P.A.; Saber, A.T.; Micheletti, C.; Jensen, K.A.; Wallin, H.; Vogel, U. Biodistribution of carbon nanotubes in animal models. Basic Clin. Pharmacol. Toxicol., 2017, 121, 30-43.
[22]
Brigger, I.; Dubernet, C.; Couvreur, P. Nanoparticles in cancer therapy and diagnosis. Adv. Drug Deliv. Rev., 2012, 64, 24-36.
[23]
Singh, R.; Pantarotto, D.; Lacerda, L.; Pastorin, G.; Klumpp, C.; Prato, M.; Bianco, A.; Kostarelos, K. Tissue biodistribution and blood clearance rates of intravenously administered carbon nanotube radiotracers. Proc. Natl. Acad. Sci. USA, 2006, 103(9), 3357-3362.
[24]
Liu, Z.; Cai, W.; He, L.; Nakayama, N.; Chen, K.; Sun, X.; Chen, X.; Dai, H. In vivo biodistribution and highly efficient tumour targeting of carbon nanotubes in mice. Nat. Nanotechnol., 2007, 2(1), 47-52.
[25]
Ali-Boucetta, H.; Kostarelos, K. Pharmacology of carbon nanotubes: Toxicokinetics, excretion and tissue accumulation. Adv. Drug Deliv. Rev., 2013, 65(15), 2111-2119.
[26]
Liu, Z.; Sun, X.; Nakayama-Ratchford, N.; Dai, H. Supramolecular chemistry on water-soluble carbon nanotubes for drug loading and delivery. ACS Nano, 2007, 1(1), 50-56.
[27]
Bhirde, A.A.; Patel, S.; Sousa, A.A.; Patel, V.; Molinolo, A.A.; Ji, Y.; Leapman, R.D.; Gutkind, J.S.; Rusling, J.F. Distribution and clearance of PEG-single-walled carbon nanotube cancer drug delivery vehicles in mice. Nanomedicine , 2010, 5(10), 1535-1546.
[28]
Zhao, X.; Tian, K.; Zhou, T.; Jia, X.; Li, J.; Liu, P. PEGylated multi-walled carbon nanotubes as versatile vector for tumor-specific intracellular triggered release with enhanced anti-cancer efficiency: Optimization of length and PEGylation degree. Colloids Surf. B Biointerfaces, 2018, 168, 43-49.
[29]
McCabe, N.; De, S.; Vasanji, A.; Brainard, J.; Byzova, T. Prostate cancer specific integrin αvβ3 modulates bone metastatic growth and tissue remodeling. Oncogene, 2007, 26(42), 6238-6243.
[30]
Hosotani, R.; Kawaguchi, M.; Masui, T.; Koshiba, T.; Ida, J.; Fujimoto, K.; Wada, M.; Doi, R.; Imamura, M. Expression of integrin αvβ3 in pancreatic carcinoma: Relation to MMP-2 activation and lymph node metastasis. Pancreas, 2002, 25(2), e30-e35.
[31]
Gasparini, G.; Brooks, P.C.; Biganzoli, E.; Vermeulen, P.B.; Bonoldi, E.; Dirix, L.Y.; Ranieri, G.; Miceli, R.; Cheresh, D.A. Vascular integrin alpha (v) beta3: A new prognostic indicator in breast cancer. Clin. Cancer Res., 1998, 4(11), 2625-2634.
[32]
Li, Z.; de Barros, A.L.B.; Soares, D.C.F.; Moss, S.N.; Alisaraie, L. Functionalized single-walled carbon nanotubes: Cellular uptake, biodistribution and applications in drug delivery. Int. J. Pharm., 2017, 524(1-2), 41-54.
[33]
Desgrosellier, J.S.; Cheresh, D.A. Integrins in cancer: Biological implications and therapeutic opportunities. Nat. Rev. Cancer, 2010, 10(1), 9-22.
[34]
Wang, H.; Wang, J.; Deng, X.; Sun, H.; Shi, Z.; Gu, Z.; Liu, Y.; Zhaoc, Y. Biodistribution of carbon single-wall carbon nanotubes in mice. J. Nanosci. Nanotechnol., 2004, 4(8), 1019-1024.
[35]
Zhao, L.; Wen, S.; Zhu, M.; Li, D.; Xing, Y.; Shen, M.; Shi, X.; Zhao, J. 99mTc-labelled multifunctional polyethylenimine-entrapped gold nanoparticles for dual mode SPECT and CT imaging. Artif. Cells Nanomed. Biotechnol., 2018, 46, 488-498.
[36]
Lacerda, L.; Soundararajan, A.; Singh, R.; Pastorin, G.; Al-Jamal, K.T.; Turton, J.; Frederik, P.; Herrero, M.A.; Li, S.; Bao, A. Dynamic imaging of functionalized multi‐walled carbon nanotube systemic circulation and urinary excretion. Adv. Mater., 2008, 20(2), 225-230.
[37]
McDevitt, M.R.; Chattopadhyay, D.; Jaggi, J.S.; Finn, R.D.; Zanzonico, P.B.; Villa, C.; Rey, D.; Mendenhall, J.; Batt, C.A.; Njardarson, J.T. PET imaging of soluble yttrium-86-labeled carbon nanotubes in mice. PLoS One, 2007, 2(9)e907
[38]
Huang, H.; Lovell, J.F. Advanced functional nanomaterials for theranostics. Adv. Funct. Mater., 2017, 27(2)1603524
[39]
Hong, S.Y.; Tobias, G.; Al-Jamal, K.T.; Ballesteros, B.; Ali-Boucetta, H.; Lozano-Perez, S.; Nellist, P.D.; Sim, R.B.; Finucane, C.; Mather, S.J. Filled and glycosylated carbon nanotubes for in vivo radioemitter localization and imaging. Nat. Mater., 2010, 9(6), 485-490.
[40]
Martin, R.; Falicov, L. Resonant Raman scattering. Light scattering in Solids I: Springer; Switzerland AG, 1983, pp. 79-145.
[41]
Zavaleta, C.; De La Zerda, A.; Liu, Z.; Keren, S.; Cheng, Z.; Schipper, M.; Chen, X.; Dai, H.; Gambhir, S. Noninvasive Raman spectroscopy in living mice for evaluation of tumor targeting with carbon nanotubes. Nano Lett., 2008, 8(9), 2800-2805.
[42]
Smith, B.R.; Zavaleta, C.; Rosenberg, J.; Tong, R.; Ramunas, J.; Liu, Z.; Dai, H.; Gambhir, S.S. High-resolution, serial intravital microscopic imaging of nanoparticle delivery and targeting in a small animal tumor model. Nano Today, 2013, 8(2), 126-137.
[43]
Welsher, K.; Sherlock, S.P.; Dai, H. Deep-tissue anatomical imaging of mice using carbon nanotube fluorophores in the second near-infrared window. Proc. Natl. Acad. Sci. USA, 2011, 108(22), 8943-8948.
[44]
Heller, D.A.; Baik, S.; Eurell, T.E.; Strano, M.S. Single‐walled carbon nanotube spectroscopy in live cells: Towards long‐term labels and optical sensors. Adv. Mater., 2005, 17(23), 2793-2799.
[45]
Hong, G.; Lee, J.C.; Robinson, J.T.; Raaz, U.; Xie, L.; Huang, N.F.; Cooke, J.P.; Dai, H. Multifunctional in vivo vascular imaging using near-infrared II fluorescence. Nat. Med., 2012, 18(12), 1841-1846.
[46]
Welsher, K.; Liu, Z.; Sherlock, S.P.; Robinson, J.T.; Chen, Z.; Daranciang, D.; Dai, H. A route to brightly fluorescent carbon nanotubes for near-infrared imaging in mice. Nat. Nanotechnol., 2009, 4(11), 773-780.
[47]
Yang, K.; Hu, L.; Ma, X.; Ye, S.; Cheng, L.; Shi, X.; Li, C.; Li, Y.; Liu, Z. Multimodal imaging guided photothermal therapy using functionalized graphene nanosheets anchored with magnetic nanoparticles. Adv. Mater., 2012, 24(14), 1868-1872.
[48]
Avti, P.K.; Hu, S.; Favazza, C.; Mikos, A.G.; Jansen, J.A.; Shroyer, K.R.; Wang, L.V.; Sitharaman, B. Detection, mapping, and quantification of single walled carbon nanotubes in histological specimens with photoacoustic microscopy. PLoS One, 2012, 7(4)e35064
[49]
Gong, H.; Peng, R.; Liu, Z. Carbon nanotubes for biomedical imaging: The recent advances. Adv. Drug Deliv. Rev., 2013, 65(15), 1951-1963.
[50]
Wang, C.; Ma, X.; Ye, S.; Cheng, L.; Yang, K.; Guo, L.; Li, C.; Li, Y.; Liu, Z. Protamine functionalized single-walled carbon nanotubes for stem cell labeling and in vivo Raman/magnetic resonance/photoacoustic triple‐modal imaging. Adv. Funct. Mater., 2012, 22(11), 2363-2375.
[51]
Mahajan, S.; Patharkar, A.; Kuche, K.; Maheshwari, R.; Deb, P.K.; Kalia, K.; Tekade, R.K. Functionalized carbon nanotubes as emerging delivery system for the treatment of cancer. Int. J. Pharm., 2018, 548(1), 540-558.
[52]
Al Faraj, A.; Fauvelle, F.; Luciani, N.; Lacroix, G.; Levy, M.; Cremillieux, Y.; Canet-Soulas, E. In vivo biodistribution and biological impact of injected carbon nanotubes using magnetic resonance techniques. Int. J. Nanomedicine, 2011, 6, 351-361.
[53]
Doan, B.T.; Seguin, J.; Breton, M.; Beherec, R.L.; Bessodes, M.; Rodríguez-Manzo, J.A.; Banhart, F.; Beloeil, J.C.; Scherman, D.; Richard, C. Functionalized single-walled carbon nanotubes containing traces of iron as new negative MRI contrast agents for in vivo imaging. Contrast Media Mol. Imaging, 2012, 7(2), 153-159.
[54]
Yang, S-T.; Wang, X.; Jia, G.; Gu, Y.; Wang, T.; Nie, H.; Ge, C.; Wang, H.; Liu, Y. Long-term accumulation and low toxicity of single-walled carbon nanotubes in intravenously exposed mice. Toxicol. Lett., 2008, 181(3), 182-189.
[55]
Allen, B.L.; Kichambare, P.D.; Gou, P.; Vlasova, I.I.; Kapralov, A.A.; Konduru, N.; Kagan, V.E.; Star, A. Biodegradation of single-walled carbon nanotubes through enzymatic catalysis. Nano Lett., 2008, 8(11), 3899-3903.
[56]
Kagan, V.E.; Konduru, N.V.; Feng, W.; Allen, B.L.; Conroy, J.; Volkov, Y.; Vlasova, I.I.; Belikova, N.A.; Yanamala, N.; Kapralov, A. Carbon nanotubes degraded by neutrophil myeloperoxidase induce less pulmonary inflammation. Nat. Nanotechnol., 2010, 5(5), 354-359.
[57]
Yang, S-T.; Wang, H.; Meziani, M.J.; Liu, Y.; Wang, X.; Sun, Y-P. Biodefunctionalization of functionalized single-walled carbon nanotubes in mice. Biomacromolecules, 2009, 10(7), 2009-2012.
[58]
Yang, S-T.; Luo, J.; Zhou, Q.; Wang, H. Pharmacokinetics, metabolism and toxicity of carbon nanotubes for biomedical purposes. Theranostics, 2012, 2(3), 271-282.
[59]
Cherukuri, P.; Gannon, C.J.; Leeuw, T.K.; Schmidt, H.K.; Smalley, R.E.; Curley, S.A.; Weisman, R.B. Mammalian pharmacokinetics of carbon nanotubes using intrinsic near-infrared fluorescence. Proc. Natl. Acad. Sci. USA, 2006, 103(50), 18882-18886.
[60]
Cedervall, T.; Lynch, I.; Lindman, S.; Berggård, T.; Thulin, E.; Nilsson, H.; Dawson, K.A.; Linse, S. Understanding the nanoparticle–protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. Proc. Natl. Acad. Sci. USA, 2007, 104(7), 2050-2055.
[61]
Liu, Z.; Davis, C.; Cai, W.; He, L.; Chen, X.; Dai, H. Circulation and long-term fate of functionalized, biocompatible single-walled carbon nanotubes in mice probed by raman spectroscopy. Proc. Natl. Acad. Sci. USA, 2008, 105(5), 1410-1415.