[1]
Lindahl, J.F.; Grace, D. The consequences of human actions on risks for infectious diseases: A review. Infect. Ecol. Epidemiol., 2015, 5(1), 30048.
[2]
Zowalaty, M.E.; Ibrahim, N.A.; Salama, M.; Shameli, K.; Usman, M.; Zainuddin, N. Synthesis, characterization, and antimicrobial properties of copper nanoparticles. Int. J. Nanomedicine, 2013, 8, 4467-4479.
[3]
Devi, J.; Devi, S.; Kumar, A. Synthesis, antibacterial evaluation and QSAR analysis of Schiff base complexes derived from [2,2′-(ethylenedioxy)bis(ethylamine)] and aromatic aldehydes. Med. Chem. Commun, 2016, 7(5), 932-947.
[4]
Perlin, D.S.; Shor, E.; Zhao, Y. Update on antifungal drug resistance. Curr. Clin. Microbiol. Rep., 2015, 2(2), 84-95.
[5]
Shapiro, R.S.; Robbins, N.; Cowen, L.E. Regulatory circuitry governing fungal development, drug resistance, and disease. Microbiol. Mol. Biol. Rev., 2011, 75(2), 213-267.
[6]
Ahmad, A.; Wani, M.Y.; Patel, M.; Sobral, A.; Duse, A.; Aqlan, F.; Al-Bogami, A. Synergistic antifungal effect of cyclized chalcone derivatives and fluconazole against Candida albicans. Med. Chem. Commun, 2017, 8(12), 2195-2207.
[7]
Sanglard, D. Emerging threats in antifungal-resistant fungal pathogens. Front. Med., 2016, 3(11), 1-10.
[8]
Belanger, E.S.; Yang, E.; Forrest, G.N. Combination antifungal therapy: When, where, and why. Curr. Clin. Microbiol. Rep., 2015, 2(2), 67-75.
[9]
Carrillo-Muñoz, A.J.; Finquelievich, J.; Tur-Tur, C.; Eraso, E.; Jauregizar, N.; Quindós, G.; Giusiano, G. Combination antifungal therapy: A strategy for the management of invasive fungal infections. Rev. Esp. Quimioter., 2014, 27(3), 141-158.
[10]
Mukherjee, P.K.; Sheehan, D.J.; Hitchcock, C.A.; Ghannoum, M.A. Combination treatment of invasive fungal infections. Clin. Microbiol. Rev., 2005, 18(1), 163-194.
[11]
Spitzer, M.; Robbins, N.; Wright, G.D. Combinatorial strategies for combating invasive fungal infections. Virulence, 2017, 8(2), 169-185.
[12]
Hatipoglu, N.; Hatipoglu, H. Combination antifungal therapy for invasive fungal infections in children and adults. Expert Rev. Anti Infect. Ther., 2013, 11(5), 523-535.
[13]
Wani, M.Y.; Ahmad, A.; Kumar, S.; Sobral, A.J. Flucytosine analogues obtained through Biginelli reaction as efficient combinative antifungal agents. Microb. Pathog., 2017, 9(105), 57-62.
[14]
Wani, M.Y.; Ahmad, A.; Shiekh, R.A.; Al-Ghamdi, K.J.; Sobral, A.J. Imidazole clubbed 1,3,4-oxadiazole derivatives as potential antifungal agents. Bioorg. Med. Chem., 2015, 23(15), 4172-4180.
[15]
Ahmad, A.; Wani, M.Y.; Khan, A.; Manzoor, N.; Molepo, J. Synergistic interactions of Eugenol-tosylate and its congeners with fluconazole against Candida albicans. PLoS One, 2015, 10(12)e0145053
[16]
Wani, M.Y.; Ahmad, A.; Malik, M.A.; Sobral, A.J. Mononuclear transition metal complexes containing iodo-imidazole ring endowed with potential anti-Candidaactivity. Med. Chem. Res., 2016, 25(11), 2557-2566.
[17]
Ahmad, A.; Khan, A.; Manzoor, N.; Khan, L.A. Evolution of ergosterol biosynthesis inhibitors as fungicidal against Candida. Microb. Pathog., 2010, 48(1), 35-41.
[18]
Hameed, A.; Al-Rashida, M.; Uroos, M.; Abid Ali, S.; Khan, K.M. Schiff bases in medicinal chemistry: A patent review (2010-2015). Expert Opin. Ther. Pat., 2017, 27(1), 63-79.
[19]
Lam, P.L.; Lee, K.K.H.; Kok, S.H.L.; Gambari, R.; Lam, K.H.; Ho, C.L.; Ma, X.; Lo, Y.H.; Wong, W.Y.; Dong, Q.C.; Bian, Z.X.; Chui, C.H. Antifungal study of substituted 4-pyridylmethylene-4′-aniline Schiff bases. RSC Adv, 2016, 6(106), 104575-104581.
[20]
Malik, M.A.; Dar, O.A.; Gull, P.; Wani, M.Y.; Hashmi, A.A. Heterocyclic Schiff base transition metal complexes in antimicrobial and anticancer chemotherapy. MedChemComm, 2018, 9, 409-436.
[21]
Kajal, A.; Bala, S.; Kamboj, S.; Sharma, N.; Saini, V. Schiff Bases: A versatile pharmacophore. J. Catal., 2013, 2013, 1-14.
[22]
Petrović, Z.D.; Đorović, J.; Simijonović, D.; Petrović, V.P.; Marković, Z. Experimental and theoretical study of antioxidative properties of some salicylaldehyde and vanillic Schiff bases. RSC Adv, 2015, 5(31), 24094-24100.
[23]
El-Gamel, N.E.A. Coordination behaviour and biopotency of metal NNsalen complexes. RSC Adv, 2012, 2(13), 5870-5876.
[24]
Da Silva, C.M.; da Silva, D.L.; Modolo, L.V.; Alves, R.B.; de Resende, M.A.; Martins, C.V.B.; de Fátima, Â. Schiff bases: A short review of their antimicrobial activities. J. Adv. Res., 2011, 2(1), 1-8.
[25]
Sztanke, K.; Maziarka, A.; Osinka, A.; Sztanke, M. An insight into synthetic Schiff bases revealing antiproliferative activities in vitro. Bioorg. Med. Chem., 2013, 21(13), 3648-3666.
[26]
Dong, Y.W.; Fan, R.Q.; Wang, P.; Wei, L.G.; Wang, X.M.; Zhang, H.J.; Gao, S.; Yang, Y.L.; Wang, Y.L. Synthesis and characterization of substituted Schiff-base ligands and their d10 metal complexes: structure-induced luminescence tuning behaviors and applications in co-sensitized solar cells. Dalt Trans., 2015, 44, 5306-5322.
[27]
Chen, W.; Ou, W.; Wang, L.; Hao, Y.; Cheng, J.; Li, J.; Liu, Y.N. Synthesis and biological evaluation of hydroxyl-substituted Schiff-bases containing ferrocenyl moieties. Dalt Trans., 2013, 42, 15678-15686.
[28]
Yao, Y.H.; Li, J.; Yuan, L.F.; Zhang, Z.Q.; Zhang, F.X. Novel porphyrin-Schiff base conjugates: Synthesis, characterization and in vitro photodynamic activities. RSC Adv, 2016, 6(51), 45681-45688.
[29]
Al-Amiery, A.A.; Al-Majedy, Y.K.; Ibrahim, H.H.; Al-Tamimi, A.A. Antioxidant, antimicrobial, and theoretical studies of the thiosemicarbazone derivative Schiff base 2-(2-imino-1-methylimidazolidin-4-ylidene) hydrazinecarbothioamide (IMHC). Org. Med. Chem. Lett., 2012, 2(1), 4.
[30]
Nath, M.; Saini, P.K. Chemistry and applications of organotin(IV) complexes of Schiff bases. Dalt Trans., 2011, 40(27), 7077-7121.
[31]
Li, X.; Houb, Y.; Yuec, L.; Liua, S.; Duc, J.; Sund, S. Potential targets for antifungal drug discovery based on growth and virulence in Candida albicans. Antimicrob. Agents Chemother., 2015, 59(10), 5885-5891.
[32]
Mahmoud, A.G.; Louis, B.R. Antifungal agents: Mode of action, mechanisms of resistance, and correlation of these mechanisms with bacterial resistance. Clin. Microbiol. Rev., 1999, 12(4), 501-517.
[33]
Wong, S.S.W.; Samaranayake, L.P.; Seneviratne, C.J. In pursuit of the ideal antifungal agent for Candida infections: High-throughput screening of small molecules. Drug Discov. Today, 2014, 19(11), 1721-1730.
[34]
Gomathi, G.; Srinivasan, T.; Velmurugan, D.; Gopalakrishnan, R. A bluish-green emitting organic compound methyl 3-[(E)-(2-hydroxy-1-naphthyl) methylidene] carbazate: Spectroscopic, thermal, fluorescence, antimicrobial and molecular docking studies. RSC Adv, 2015, 5(56), 44742-44748.
[35]
Lian, W.J.; Wang, X.T.; Xie, C.Z.; Tian, H.; Song, X.Q.; Pan, H.T.; Qiao, X.; Xu, J.Y. Mixed-ligand copper(II) Schiff base complexes: The role of the co-ligand in DNA binding, DNA cleavage, protein binding and cytotoxicity. Dalt Trans., 2016, 45(22), 9073-9087.
[36]
Martínez, R.F.; Ávalos, M.; Babiano, R.; Cintas, P.; Jiménez, J.L.; Light, M.E.; Palacios, J.C. Tautomerism in Schiff bases. The cases of 2-hydroxy-1-naphthaldehyde and 1-hydroxy-2-naphthaldehyde investigated in solution and the solid state. Org. Biomol. Chem., 2011, 9(24), 8268-8275.
[37]
Carreño, A.; Gacitúa, M.; Páez-Hernández, D.; Polanco, R.; Preite, M.; Fuentes, J.A.; Mora, G.C.; Chávez, I.; Arratia-Pérez, R. Spectral, theoretical characterization and antifungal properties of two phenol derivative Schiff bases with an intramolecular hydrogen bond. New J. Chem., 2015, 39(10), 7822-7831.
[38]
Sun, W.; Weingarten, R.A.; Xu, M.; Southall, N.; Dai, S.; Shinn, P.; Sanderson, P.E.; Williamson, P.R.; Frank, K.M.; Zheng, W. Rapid antimicrobial susceptibility test for identification of new therapeutics and drug combinations against multidrug-resistant bacteria. Emerg. Microbes Infect., 2016, 5(11)e116
[39]
Capobianco, J.O.; Doran, C.C.; Goldman, R.C.; De, B. A non-azole inhibitor of lanosterol l4α-methy1 demethylase in Candida albicans. J. Antimicrob. Chemother., 1992, 30, 781-790.
[40]
CLSI - Clinical and Laboratory Standards Institute Reference method for broth dilution antifungal susceptibility testing of yeast, Approved Standard M27-A3; Clinical and Laboratory Standards Institute Standards: Wayne, PA, USA, 2008, p. 40.
[41]
Vuuren, S.V.; Viljoen, A. Plant-based antimicrobial studies-methods and approaches to study the interaction between natural products. Planta Med., 2011, 77(11), 1168-1182.
[42]
Trott, O.; Olson, A.J. Software news and update AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 2010, 31(2), 455-461.