[1]
Kaltashov, I.A.; Eyles, S.J. Studies of biomolecular conformations and conformational dynamics by mass spectrometry. Mass Spectrom. Rev., 2002, 21, 37-71.
[2]
Nilsson, T.; Mann, M.; Aebersold, R.; Yates, J.R.; Bairoch, A.; Bergeron, J.J.M. Mass spectrometry in high-throughput proteomics: Ready for the big time. Nat. Methods, 2010, 7, 681-685.
[3]
Rajabi, K.; Ashcroft, A.E.; Radford, S.E. Mass spectrometric methods to analyze the structural organization of macromolecular complexes. Methods, 2015, 89, 13-21.
[4]
Zhang, H.; Cui, W.D.; Gross, M.L. Mass spectrometry for the biophysical characterization of therapeutic monoclonal antibodies. FEBS Lett., 2014, 588, 308-317.
[5]
Konermann, L.; Vahidi, S.; Sowole, M.A. Mass spectrometry methods for studying structure and dynamics of biological macromolecules. Anal. Chem., 2014, 86, 213-232.
[6]
Wang, L.W.; Chance, M.R. Structural mass spectrometry of proteins using hydroxyl radical based protein footprinting. Anal. Chem., 2011, 83, 7234-7241.
[7]
Konermann, L.; Pan, J.X.; Liu, Y.H. Hydrogen exchange mass spectrometry for studying protein structure and dynamics. Chem. Soc. Rev., 2011, 40, 1224-1234.
[8]
Marcsisin, S.R.; Engen, J.R. Hydrogen exchange mass spectrometry: What is it and what can it tell us? Anal. Bioanal. Chem., 2010, 397, 967-972.
[9]
Xu, G.H.; Chance, M.R. Hydroxyl radical-mediated modification of proteins as probes for structural proteomics. Chem. Rev., 2007, 107, 3514-3543.
[10]
Takamoto, K.; Chance, M.R. Radiolytic protein footprinting with mass spectrometry to probe the structure of macromolecular complexes. Annu. Rev. Biophys. Biomol. Struct., 2006, 35, 251-276.
[11]
Kaur, P.; Tomechko, S.E.; Kiselar, J.; Shi, W.X.; Deperalta, G.; Wecksler, A.T.; Gokulrangan, G.; Ling, V.; Chance, M.R. Characterizing monoclonal antibody structure by carboxyl group footprinting. MAbs, 2015, 7, 540-552.
[12]
Maleknia, S.D.; Brenowitz, M.; Chance, M.R. Millisecond radiolytic modification of peptides by synchrotron X-rays identified by mass spectrometry. Anal. Chem., 1999, 71, 3965-3973.
[13]
Hambly, D.M.; Gross, M.L. Laser flash photolysis of hydrogen peroxide to oxidize protein solvent-accessible residues on the microsecond timescale. J. Am. Soc. Mass Spectrom., 2005, 16, 2057-2063.
[14]
Chen, J.; Rempel, D.L.; Gross, M.L. Temperature jump and fast photochemical oxidation probe submillisecond protein folding. J. Am. Chem. Soc., 2010, 132, 15502-15504.
[15]
Gau, B.C.; Sharp, J.S.; Rempel, D.L.; Gross, M.L. Fast photochemical oxidation of protein footprints faster than protein unfolding. Anal. Chem., 2009, 81, 6563-6571.
[16]
Hambly, D.; Gross, M. Laser flash photochemical oxidation to locate heme binding and conformational changes in myoglobin. Int. J. Mass Spectrom., 2007, 259, 124-129.
[17]
Vahidi, S.; Konermann, L. Probing the time scale of FPOP (Fast Photochemical Oxidation of Proteins): Radical reactions extend over tens of milliseconds. J. Am. Soc. Mass Spectrom., 2016, 27, 1156-1164.
[18]
Heinkel, F.; Gsponer, J. Determination of protein folding intermediate structures consistent with data from oxidative footprinting mass spectrometry. J. Mol. Biol., 2016, 428, 365-371.
[19]
Rajabi, K.; Reuther, J.; Deuerling, E.; Radford, S.E.; Ashcroft, A.E. A comparison of the folding characteristics of free and ribosome-tethered polypeptide chains using limited proteolysis and mass spectrometry. Protein Sci., 2015, 24, 1282-1291.
[20]
Wu, L.; Lapidus, L.J. Combining ultrarapid mixing with photochemical oxidation to probe protein folding. Anal. Chem., 2013, 85, 4920-4924.
[21]
Gau, B.C.; Chen, J.W.; Gross, M.L. Fast photochemical oxidation of proteins for comparing solvent-accessibility accompanying protein folding: Data processing and application to barstar. Biochim. Biophys. Acta, 2013, 1834, 1230-1238.
[22]
Chen, J.W.; Rempel, D.L.; Gau, B.C.; Gross, M.L. Fast photochemical oxidation of proteins and mass spectrometry follow submillisecond protein folding at the amino-acid level. J. Am. Chem. Soc., 2012, 134, 18724-18731.
[23]
Pan, Y.; Brown, L.; Konermann, L. Kinetic folding mechanism of an integral membrane protein examined by pulsed oxidative labeling and mass spectrometry. J. Mol. Biol., 2011, 410, 146-158.
[24]
Chen, J.W.; Rempel, D.L.; Gross, M.L. Temperature jump and fast photochemical oxidation probe submillisecond protein folding. J. Am. Chem. Soc., 2010, 132, 15502-15504.
[25]
Yefremova, Y.; Al-Majdoub, M.; Opuni, K.F.M.; Koy, C.; Yan, Y.; Gross, M.L.; Glocker, M.O. A dynamic model of ph-induced protein g’e higher order structure changes derived from mass spectrometric analyses. Anal. Chem., 2016, 88, 890-897.
[26]
Lu, Y.; Zhang, H.; Niedzwiedzki, D.M.; Jiang, J.; Blankenship, R.E.; Gross, M.L. Fast photochemical oxidation of proteins maps the topology of intrinsic membrane proteins: Light-harvesting complex 2 in a nanodisc. Anal. Chem., 2016, 88, 8827-8834.
[27]
Huang, W.; Ravikumar, K.M.; Parisien, M.; Yang, S. Theoretical modeling of multiprotein complexes by iSPOT: Integration of small-angle X-ray scattering, hydroxyl radical footprinting, and computational docking. J. Struct. Biol., 2016, 196, 340-349.
[28]
Akashi, S.; Maleknia, S.D.; Saikusa, K.; Downard, K.M. Stability of the betaB2B3 crystallin heterodimer to increased oxidation by radical probe and ion mobility mass spectrometry. J. Struct. Biol., 2015, 189, 20-27.
[29]
Jones, L.M.; Zhang, H.; Cui, W.D.; Kumar, S.; Sperry, J.B.; Carroll, J.A.; Gross, M.L. Complementary MS methods assist conformational characterization of antibodies with altered s-s bonding networks. J. Am. Soc. Mass Spectrom., 2013, 24, 835-845.
[30]
Watson, C.; Sharp, J.S. Conformational analysis of therapeutic proteins by hydroxyl radical protein footprinting. AAPS J., 2012, 14, 206-217.
[31]
Vahidi, S.; Stocks, B.B.; Liaghati-Mobarhan, Y.; Konermann, L. Mapping pH-induced protein structural changes under equilibrium conditions by pulsed oxidative labeling and mass spectrometry. Anal. Chem., 2012, 84, 9124-9130.
[32]
Stocks, B.B.; Sarkar, A.; Wintrode, P.L.; Konermann, L. Early Hydrophobic collapse of alpha(1)-antitrypsin facilitates formation of a metastable state: Insights from oxidative labeling and mass spectrometry. J. Mol. Biol., 2012, 423, 789-799.
[33]
Wang, L.W.; Qin, Y.L.; Ilchenko, S.; Bohon, J.; Shi, W.X.; Cho, M.W.; Takamoto, K.; Chance, M.R. Structural Analysis of a highly glycosylated and unliganded gp120-based antigen using mass spectrometry. Biochemistry, 2010, 49, 9032-9045.
[34]
Hambly, D.; Gross, M. Laser flash photochemical oxidation to locate heme binding and conformational changes in myroglobin. Int. J. Mass Spectrom., 2007, 259, 124-129.
[35]
Jones, L.M.; Sperry, J.B.; Carroll, J.A.; Gross, M.L. Fast photochemical oxidation of proteins for epitope mapping. Anal. Chem., 2011, 83, 7657-7661.
[36]
Klinger, A.L.; Kiselar, J.; Ilchenko, S.; Komatsu, H.; Chance, M.R.; Axelsen, P.H. A synchrotron-based hydroxyl radical footprinting analysis of amyloid fibrils and prefibrillar intermediates with residue-specific resolution. Biochemistry, 2014, 53, 7724-7734.
[37]
French, K.C.; Roan, N.R.; Makhatadze, G.I. Structural characterization of semen coagulum-derived SEMI (86-107) amyloid fibrils that enhance HIV-1 infection. Biochemistry, 2014, 53, 3267-3277.
[38]
Huang, L.; Yin, P.; Zhu, X.; Zhang, Y.; Ye, K.Q. Crystal structure and centromere binding of the plasmid segregation protein ParB from pCXC100. Nucleic Acids Res., 2011, 39, 2954-2968.
[39]
Li, J.; Wei, H.; Krystek, S.R.; Bond, D.; Brender, T.M.; Cohen, D.; Feiner, J.; Hamacher, N.; Harshman, J.; Huang, R.Y-C.; Julien, S.H.; Lin, Z.; Moore, K.; Mueller, L.; Noriega, C.; Sejwal, P.; Sheppard, P.; Stevens, B.; Chen, G.; Tymiak, A.A.; Gross, M.L.; Schneeweis, L.A. Mapping the energetic epitope of an antibody/interleukin-23 interaction with hydrogen/deuterium exchange, fast photochemical oxidation of proteins mass spectrometry, and alanine shave mutagenesis. Anal. Chem., 2017, 89, 2250-2258.
[40]
Li, K.S.; Chen, G.; Mo, J.; Huang, R.Y-C.; Deyanova, E.G.; Beno, B.R.; O’Neil, S.R.; Tymiak, A.A.; Gross, M.L. Orthogonal mass spectrometry-based footprinting for epitope mapping and structural characterization: The IL-6 Receptor upon binding of protein therapeutics. Anal. Chem., 2017, 89, 7742-7749.
[41]
Lin, M.; Krawitz, D.; Callahan, M.D.; Deperalta, G. Wecksler, Aaron, T. Characterization of ELISA antibody-antigen interaction using footprinting-mass spectrometry and negative staining transmission electron microscopy. J. Am. Soc. Mass Spectrom., 2018, 29, 961-971.
[42]
Watkinson, T.G.; Calabrese, A.N.; Ault, J.R.; Radford, S.E.; Ashcroft, A.E. FPOP-LC-MS/MS suggests differences in interaction sites of amphipols and detergents with outer membrane proteins. J. Am. Soc. Mass Spectrom., 2017, 28, 50-55.
[43]
Poor, T.A.; Jones, L.M.; Sood, A.; Leser, G.P.; Plasencia, M.D.; Rempel, D.L.; Jardetzky, T.S.; Woods, R.J.; Gross, M.L.; Lamb, R.A. Probing the paramyxovirus fusion (F) protein-refolding event from pre- to postfusion by oxidative footprinting. Proc. Natl. Acad. Sci. USA, 2014, 111, 2596-2605.
[44]
Li, K.S.; Rempel, D.L.; Gross, M.L. Conformational-sensitive fast photochemical oxidation of proteins and mass spectrometry characterize amyloid beta 1–42 aggregation. J. Am. Chem. Soc., 2016, 138, 12090-12098.
[45]
Yan, Y.T.; Chen, G.D.; Wei, H.; Huang, R.Y.C.; Mo, J.J.; Rempel, D.L.; Tymiak, A.A.; Gross, M.L. Fast Photochemical Oxidation of Proteins (FPOP) maps the epitope of EGFR binding to adnectin. J. Am. Soc. Mass Spectrom., 2014, 25, 2084-2092.
[46]
Xie, B.E.; Sharp, J.S. Relative quantification of sites of peptide and protein modification using size exclusion chromatography coupled with electron transfer dissociation. J. Am. Soc. Mass Spectrom., 2016, 27, 1322-1327.
[47]
Rinas, A.; Mali, V.S.; Espino, J.A.; Jones, L.M. Development of a microflow system for in-cell footprinting coupled with mass spectrometry. Anal. Chem., 2016, 88, 10052-10058.
[48]
Rinas, A.; Espino, J.A.; Jones, L.M. An efficient quantitation strategy for hydroxyl radical-mediated protein footprinting using proteome discoverer. Anal. Bioanal. Chem., 2016, 408, 3021-3031.
[49]
Xie, B.; Sharp, J.S. Hydroxyl radical dosimetry for high flux hydroxyl radical protein footprinting applications using a simple optical detection method. Anal. Chem., 2015, 87, 10719-10723.
[50]
Rinas, A.; Jones, L.M. Fast photochemical oxidation of proteins coupled to Multidimensional Protein Identification Technology (MudPIT): Expanding footprinting strategies to complex systems. J. Am. Soc. Mass Spectrom., 2015, 26, 540-546.
[51]
Kaur, P.; Kiselar, J.; Yang, S.C.; Chance, M.R. Quantitative protein topography analysis and high-resolution structure prediction using hydroxyl radical labeling and tandem-ion Mass Spectrometry (MS). Mol. Cell. Proteomics, 2015, 14, 1159-1168.
[52]
Espino, J.A.; Mali, V.S.; Jones, L.M. In cell footprinting coupled with mass spectrometry for the structural analysis of proteins in live cells. Anal. Chem., 2015, 87, 7971-7978.
[53]
Niu, B.; Mackness, B.C.; Rempel, D.L.; Zhang, H.; Cui, W.; Matthews, C.R.; Zitzewitz, J.A.; Gross, M.L. Incorporation of a reporter peptide in FPOP compensates for adventitious scavengers and permits time-dependent measurements. J. Am. Soc. Mass Spectrom., 2016, 28, 389-392.
[54]
Zhang, B.J.; Rempel, D.L.; Gross, M.L. Protein footprinting by carbenes on a Fast Photochemical Oxidation of Proteins (FPOP) platform. J. Am. Soc. Mass Spectrom., 2016, 27, 552-555.