Generic placeholder image

Protein & Peptide Letters

Editor-in-Chief

ISSN (Print): 0929-8665
ISSN (Online): 1875-5305

Review Article

Fast Photochemical Oxidation of Proteins Coupled with Mass Spectrometry

Author(s): Liuqing Shi and Michael L. Gross*

Volume 26, Issue 1, 2019

Page: [27 - 34] Pages: 8

DOI: 10.2174/0929866526666181128124554

Price: $65

Abstract

Background: Determination of the composition and some structural features of macromolecules can be achieved by using structural proteomics approaches coupled with mass spectrometry (MS). One approach is hydroxyl radical protein footprinting whereby amino-acid side chains are modified with reactive reagents to modify irreversibly a protein side chain. The outcomes, when deciphered with mass-spectrometry-based proteomics, can increase our knowledge of structure, assembly, and conformational dynamics of macromolecules in solution. Generating the hydroxyl radicals by laser irradiation, Hambly and Gross developed the approach of Fast Photochemical Oxidation of Proteins (FPOP), which labels proteins on the sub millisecond time scale and provides, with MS analysis, deeper understanding of protein structure and protein-ligand and protein- protein interactions. This review highlights the fundamentals of FPOP and provides descriptions of hydroxyl-radical and other radical and carbene generation, of the hydroxyl labeling of proteins, and of determination of protein modification sites. We also summarize some recent applications of FPOP coupled with MS in protein footprinting.

Conclusion: We survey results that show the capability of FPOP for qualitatively measuring protein solvent accessibility on the residue level. To make these approaches more valuable, we describe recent method developments that increase FPOP’s quantitative capacity and increase the spatial protein sequence coverage. To improve FPOP further, several new labeling reagents including carbenes and other radicals have been developed. These growing improvements will allow oxidative- footprinting methods coupled with MS to play an increasingly significant role in determining the structure and dynamics of macromolecules and their assemblies.

Keywords: Hydroxyl radical labeling, Fast Photochemical Oxidation of Proteins (FPOP), protein footprinting, liquid chromatography- mass spectrometry, solvent accessibility, protein high order structure, amyloids, protein folding, epitope mapping.

Graphical Abstract

[1]
Kaltashov, I.A.; Eyles, S.J. Studies of biomolecular conformations and conformational dynamics by mass spectrometry. Mass Spectrom. Rev., 2002, 21, 37-71.
[2]
Nilsson, T.; Mann, M.; Aebersold, R.; Yates, J.R.; Bairoch, A.; Bergeron, J.J.M. Mass spectrometry in high-throughput proteomics: Ready for the big time. Nat. Methods, 2010, 7, 681-685.
[3]
Rajabi, K.; Ashcroft, A.E.; Radford, S.E. Mass spectrometric methods to analyze the structural organization of macromolecular complexes. Methods, 2015, 89, 13-21.
[4]
Zhang, H.; Cui, W.D.; Gross, M.L. Mass spectrometry for the biophysical characterization of therapeutic monoclonal antibodies. FEBS Lett., 2014, 588, 308-317.
[5]
Konermann, L.; Vahidi, S.; Sowole, M.A. Mass spectrometry methods for studying structure and dynamics of biological macromolecules. Anal. Chem., 2014, 86, 213-232.
[6]
Wang, L.W.; Chance, M.R. Structural mass spectrometry of proteins using hydroxyl radical based protein footprinting. Anal. Chem., 2011, 83, 7234-7241.
[7]
Konermann, L.; Pan, J.X.; Liu, Y.H. Hydrogen exchange mass spectrometry for studying protein structure and dynamics. Chem. Soc. Rev., 2011, 40, 1224-1234.
[8]
Marcsisin, S.R.; Engen, J.R. Hydrogen exchange mass spectrometry: What is it and what can it tell us? Anal. Bioanal. Chem., 2010, 397, 967-972.
[9]
Xu, G.H.; Chance, M.R. Hydroxyl radical-mediated modification of proteins as probes for structural proteomics. Chem. Rev., 2007, 107, 3514-3543.
[10]
Takamoto, K.; Chance, M.R. Radiolytic protein footprinting with mass spectrometry to probe the structure of macromolecular complexes. Annu. Rev. Biophys. Biomol. Struct., 2006, 35, 251-276.
[11]
Kaur, P.; Tomechko, S.E.; Kiselar, J.; Shi, W.X.; Deperalta, G.; Wecksler, A.T.; Gokulrangan, G.; Ling, V.; Chance, M.R. Characterizing monoclonal antibody structure by carboxyl group footprinting. MAbs, 2015, 7, 540-552.
[12]
Maleknia, S.D.; Brenowitz, M.; Chance, M.R. Millisecond radiolytic modification of peptides by synchrotron X-rays identified by mass spectrometry. Anal. Chem., 1999, 71, 3965-3973.
[13]
Hambly, D.M.; Gross, M.L. Laser flash photolysis of hydrogen peroxide to oxidize protein solvent-accessible residues on the microsecond timescale. J. Am. Soc. Mass Spectrom., 2005, 16, 2057-2063.
[14]
Chen, J.; Rempel, D.L.; Gross, M.L. Temperature jump and fast photochemical oxidation probe submillisecond protein folding. J. Am. Chem. Soc., 2010, 132, 15502-15504.
[15]
Gau, B.C.; Sharp, J.S.; Rempel, D.L.; Gross, M.L. Fast photochemical oxidation of protein footprints faster than protein unfolding. Anal. Chem., 2009, 81, 6563-6571.
[16]
Hambly, D.; Gross, M. Laser flash photochemical oxidation to locate heme binding and conformational changes in myoglobin. Int. J. Mass Spectrom., 2007, 259, 124-129.
[17]
Vahidi, S.; Konermann, L. Probing the time scale of FPOP (Fast Photochemical Oxidation of Proteins): Radical reactions extend over tens of milliseconds. J. Am. Soc. Mass Spectrom., 2016, 27, 1156-1164.
[18]
Heinkel, F.; Gsponer, J. Determination of protein folding intermediate structures consistent with data from oxidative footprinting mass spectrometry. J. Mol. Biol., 2016, 428, 365-371.
[19]
Rajabi, K.; Reuther, J.; Deuerling, E.; Radford, S.E.; Ashcroft, A.E. A comparison of the folding characteristics of free and ribosome-tethered polypeptide chains using limited proteolysis and mass spectrometry. Protein Sci., 2015, 24, 1282-1291.
[20]
Wu, L.; Lapidus, L.J. Combining ultrarapid mixing with photochemical oxidation to probe protein folding. Anal. Chem., 2013, 85, 4920-4924.
[21]
Gau, B.C.; Chen, J.W.; Gross, M.L. Fast photochemical oxidation of proteins for comparing solvent-accessibility accompanying protein folding: Data processing and application to barstar. Biochim. Biophys. Acta, 2013, 1834, 1230-1238.
[22]
Chen, J.W.; Rempel, D.L.; Gau, B.C.; Gross, M.L. Fast photochemical oxidation of proteins and mass spectrometry follow submillisecond protein folding at the amino-acid level. J. Am. Chem. Soc., 2012, 134, 18724-18731.
[23]
Pan, Y.; Brown, L.; Konermann, L. Kinetic folding mechanism of an integral membrane protein examined by pulsed oxidative labeling and mass spectrometry. J. Mol. Biol., 2011, 410, 146-158.
[24]
Chen, J.W.; Rempel, D.L.; Gross, M.L. Temperature jump and fast photochemical oxidation probe submillisecond protein folding. J. Am. Chem. Soc., 2010, 132, 15502-15504.
[25]
Yefremova, Y.; Al-Majdoub, M.; Opuni, K.F.M.; Koy, C.; Yan, Y.; Gross, M.L.; Glocker, M.O. A dynamic model of ph-induced protein g’e higher order structure changes derived from mass spectrometric analyses. Anal. Chem., 2016, 88, 890-897.
[26]
Lu, Y.; Zhang, H.; Niedzwiedzki, D.M.; Jiang, J.; Blankenship, R.E.; Gross, M.L. Fast photochemical oxidation of proteins maps the topology of intrinsic membrane proteins: Light-harvesting complex 2 in a nanodisc. Anal. Chem., 2016, 88, 8827-8834.
[27]
Huang, W.; Ravikumar, K.M.; Parisien, M.; Yang, S. Theoretical modeling of multiprotein complexes by iSPOT: Integration of small-angle X-ray scattering, hydroxyl radical footprinting, and computational docking. J. Struct. Biol., 2016, 196, 340-349.
[28]
Akashi, S.; Maleknia, S.D.; Saikusa, K.; Downard, K.M. Stability of the betaB2B3 crystallin heterodimer to increased oxidation by radical probe and ion mobility mass spectrometry. J. Struct. Biol., 2015, 189, 20-27.
[29]
Jones, L.M.; Zhang, H.; Cui, W.D.; Kumar, S.; Sperry, J.B.; Carroll, J.A.; Gross, M.L. Complementary MS methods assist conformational characterization of antibodies with altered s-s bonding networks. J. Am. Soc. Mass Spectrom., 2013, 24, 835-845.
[30]
Watson, C.; Sharp, J.S. Conformational analysis of therapeutic proteins by hydroxyl radical protein footprinting. AAPS J., 2012, 14, 206-217.
[31]
Vahidi, S.; Stocks, B.B.; Liaghati-Mobarhan, Y.; Konermann, L. Mapping pH-induced protein structural changes under equilibrium conditions by pulsed oxidative labeling and mass spectrometry. Anal. Chem., 2012, 84, 9124-9130.
[32]
Stocks, B.B.; Sarkar, A.; Wintrode, P.L.; Konermann, L. Early Hydrophobic collapse of alpha(1)-antitrypsin facilitates formation of a metastable state: Insights from oxidative labeling and mass spectrometry. J. Mol. Biol., 2012, 423, 789-799.
[33]
Wang, L.W.; Qin, Y.L.; Ilchenko, S.; Bohon, J.; Shi, W.X.; Cho, M.W.; Takamoto, K.; Chance, M.R. Structural Analysis of a highly glycosylated and unliganded gp120-based antigen using mass spectrometry. Biochemistry, 2010, 49, 9032-9045.
[34]
Hambly, D.; Gross, M. Laser flash photochemical oxidation to locate heme binding and conformational changes in myroglobin. Int. J. Mass Spectrom., 2007, 259, 124-129.
[35]
Jones, L.M.; Sperry, J.B.; Carroll, J.A.; Gross, M.L. Fast photochemical oxidation of proteins for epitope mapping. Anal. Chem., 2011, 83, 7657-7661.
[36]
Klinger, A.L.; Kiselar, J.; Ilchenko, S.; Komatsu, H.; Chance, M.R.; Axelsen, P.H. A synchrotron-based hydroxyl radical footprinting analysis of amyloid fibrils and prefibrillar intermediates with residue-specific resolution. Biochemistry, 2014, 53, 7724-7734.
[37]
French, K.C.; Roan, N.R.; Makhatadze, G.I. Structural characterization of semen coagulum-derived SEMI (86-107) amyloid fibrils that enhance HIV-1 infection. Biochemistry, 2014, 53, 3267-3277.
[38]
Huang, L.; Yin, P.; Zhu, X.; Zhang, Y.; Ye, K.Q. Crystal structure and centromere binding of the plasmid segregation protein ParB from pCXC100. Nucleic Acids Res., 2011, 39, 2954-2968.
[39]
Li, J.; Wei, H.; Krystek, S.R.; Bond, D.; Brender, T.M.; Cohen, D.; Feiner, J.; Hamacher, N.; Harshman, J.; Huang, R.Y-C.; Julien, S.H.; Lin, Z.; Moore, K.; Mueller, L.; Noriega, C.; Sejwal, P.; Sheppard, P.; Stevens, B.; Chen, G.; Tymiak, A.A.; Gross, M.L.; Schneeweis, L.A. Mapping the energetic epitope of an antibody/interleukin-23 interaction with hydrogen/deuterium exchange, fast photochemical oxidation of proteins mass spectrometry, and alanine shave mutagenesis. Anal. Chem., 2017, 89, 2250-2258.
[40]
Li, K.S.; Chen, G.; Mo, J.; Huang, R.Y-C.; Deyanova, E.G.; Beno, B.R.; O’Neil, S.R.; Tymiak, A.A.; Gross, M.L. Orthogonal mass spectrometry-based footprinting for epitope mapping and structural characterization: The IL-6 Receptor upon binding of protein therapeutics. Anal. Chem., 2017, 89, 7742-7749.
[41]
Lin, M.; Krawitz, D.; Callahan, M.D.; Deperalta, G. Wecksler, Aaron, T. Characterization of ELISA antibody-antigen interaction using footprinting-mass spectrometry and negative staining transmission electron microscopy. J. Am. Soc. Mass Spectrom., 2018, 29, 961-971.
[42]
Watkinson, T.G.; Calabrese, A.N.; Ault, J.R.; Radford, S.E.; Ashcroft, A.E. FPOP-LC-MS/MS suggests differences in interaction sites of amphipols and detergents with outer membrane proteins. J. Am. Soc. Mass Spectrom., 2017, 28, 50-55.
[43]
Poor, T.A.; Jones, L.M.; Sood, A.; Leser, G.P.; Plasencia, M.D.; Rempel, D.L.; Jardetzky, T.S.; Woods, R.J.; Gross, M.L.; Lamb, R.A. Probing the paramyxovirus fusion (F) protein-refolding event from pre- to postfusion by oxidative footprinting. Proc. Natl. Acad. Sci. USA, 2014, 111, 2596-2605.
[44]
Li, K.S.; Rempel, D.L.; Gross, M.L. Conformational-sensitive fast photochemical oxidation of proteins and mass spectrometry characterize amyloid beta 1–42 aggregation. J. Am. Chem. Soc., 2016, 138, 12090-12098.
[45]
Yan, Y.T.; Chen, G.D.; Wei, H.; Huang, R.Y.C.; Mo, J.J.; Rempel, D.L.; Tymiak, A.A.; Gross, M.L. Fast Photochemical Oxidation of Proteins (FPOP) maps the epitope of EGFR binding to adnectin. J. Am. Soc. Mass Spectrom., 2014, 25, 2084-2092.
[46]
Xie, B.E.; Sharp, J.S. Relative quantification of sites of peptide and protein modification using size exclusion chromatography coupled with electron transfer dissociation. J. Am. Soc. Mass Spectrom., 2016, 27, 1322-1327.
[47]
Rinas, A.; Mali, V.S.; Espino, J.A.; Jones, L.M. Development of a microflow system for in-cell footprinting coupled with mass spectrometry. Anal. Chem., 2016, 88, 10052-10058.
[48]
Rinas, A.; Espino, J.A.; Jones, L.M. An efficient quantitation strategy for hydroxyl radical-mediated protein footprinting using proteome discoverer. Anal. Bioanal. Chem., 2016, 408, 3021-3031.
[49]
Xie, B.; Sharp, J.S. Hydroxyl radical dosimetry for high flux hydroxyl radical protein footprinting applications using a simple optical detection method. Anal. Chem., 2015, 87, 10719-10723.
[50]
Rinas, A.; Jones, L.M. Fast photochemical oxidation of proteins coupled to Multidimensional Protein Identification Technology (MudPIT): Expanding footprinting strategies to complex systems. J. Am. Soc. Mass Spectrom., 2015, 26, 540-546.
[51]
Kaur, P.; Kiselar, J.; Yang, S.C.; Chance, M.R. Quantitative protein topography analysis and high-resolution structure prediction using hydroxyl radical labeling and tandem-ion Mass Spectrometry (MS). Mol. Cell. Proteomics, 2015, 14, 1159-1168.
[52]
Espino, J.A.; Mali, V.S.; Jones, L.M. In cell footprinting coupled with mass spectrometry for the structural analysis of proteins in live cells. Anal. Chem., 2015, 87, 7971-7978.
[53]
Niu, B.; Mackness, B.C.; Rempel, D.L.; Zhang, H.; Cui, W.; Matthews, C.R.; Zitzewitz, J.A.; Gross, M.L. Incorporation of a reporter peptide in FPOP compensates for adventitious scavengers and permits time-dependent measurements. J. Am. Soc. Mass Spectrom., 2016, 28, 389-392.
[54]
Zhang, B.J.; Rempel, D.L.; Gross, M.L. Protein footprinting by carbenes on a Fast Photochemical Oxidation of Proteins (FPOP) platform. J. Am. Soc. Mass Spectrom., 2016, 27, 552-555.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy