[1]
D. Fetterly, M. Manasse, and M. Najork, "Spam, damn spam, and statistics: Using statistical analysis to locate spam Web pages", In Proceeding 7th International Workshop on the Web and Databases Paris, France 2004, pp. 1-6.
[2]
E.J. González, Artificial Intelligence Resources in Control and Automation Engineering., Bentham Science Publishers, 2012.
[3]
K.L. Goh, and A.K. Singh, "Comprehensive literature review on machine learning structures for web spam classification", Procedia Comput. Sci., vol. 70, pp. 434-441, 2015.
[4]
R.C. Patil, and Patil D.R., "Web spam detection using SVM classifier", In: International Conference on Intelligent Systems and Control IEEE, 2015pp. 1-4
[5]
J. Fdez-Glez, D. Ruano-Ordas, J.R. Méndez, F. Fdez-Riverola, R. Laza, and R. Pavón, "A dynamic model for integrating simple web spam classification techniques", Expert Syst. Appl., vol. 42, pp. 7969-7978, 2015.
[6]
N. Spirin, and J. Han, "Survey on web spam detection: Principles and algorithms", ACM SIGKDD Explor. Newslett., vol. 13, pp. 50-64, 2012.
[7]
S. Ghiam, and A. Nemaneypour, "A survey on web spam detection methods: Taxonomy", Int. J. Net. Sec. Appl., vol. 4, pp. 119-134, 2012.
[8]
J.I. Hua, and H. Zhang, "Analysis on the content features and their correlation of web pages for spam detection", China Commun., vol. 12, pp. 84-94, 2015.
[9]
J. Wan, M. Liu, J. Yi, and X. Zhang, “Detecting spam webpages through topic and semantics analysis,” Computer & Information Technology (GSCIT)., Global Summit on: Sousse, Tunisia, 2015, pp. 1-7.
[10]
W.U. Lei, B. Gao, and L.I. Jing, "Web spam detection based on structural and temporal information", Appl. Res. Comput., vol. 25, pp. 1243-1246, 2008.
[11]
L. Araujo, and J. Martinez-Romo, "Web spam detection: New classification features based on qualified link analysis and language models", IEEE Trans. Inf. Forensics Security, vol. 5, pp. 581-590, 2010.
[12]
S. Webb, L. Liu, and W.B. Rouse, "A parameterized approach to spam-resilient link analysis of the web", IEEE Trans. Parallel Distrib. Syst., vol. 20, pp. 1422-1438, 2009.
[13]
C. Castillo, D. Donato, L. Becchetti, P. Boldi, M. Santini, and S. Vigna, "A reference collection for web spam", SIGIR Forum, Vol. 40, pp. 11-24, 2006.
[15]
C.L. Jian, Y. Zhang, and Y. Li, "Non-divergence of stochastic discrete time algorithms for PCA neural networks", IEEE Trans. Neural Netw. Learn. Syst., vol. 26, pp. 394-399, 2015.
[16]
T. Bouwmans, "Subspace learning for background modeling: A survey", Recent Pat. Comput. Sci., vol. 2, pp. 223-234, 2009.
[17]
Z.H. Yu, and W.L. Chin, "Blind false data injection attack using PCA approximation method in smart grid", IEEE Trans. Smart Grid, vol. 6, pp. 1219-1226, 2015.
[18]
Z. Chen, Q. Zhu, S.Y. Chai, and L. Zhang, "Robust human activity recognition using smartphone sensors via CT-PCA and online SVM", IEEE Trans. on Industr. Inform.. 2017, pp. 1-1.
[19]
J.G. Bala, and S.L. Fernandes, "Recognizing faces across age progressions and under occlusion", Recent Pat. Comput. Sci., vol. 9, pp. 209-215, 2016.
[20]
A. Keyhanipour, and B. Moshiri, "Designing a web spam classifier based on feature fusion in the layered multi-population genetic programming framework", In Proceeding 16th International Conference of Information Fusion (FUSION 2013) Istanbul, Turkey 2013, pp. 53-60.
[21]
X. Wang, S. Chen, and M. Yao, "Data dimensionality reduction method of semi-supervised isometric mapping based on regularization", J. Electr. Inf. Technol., vol. 38, pp. 241-245, 2016.
[22]
G.E. Hinton, and R.R. Salakhutdinov, "Supporting online material for reducing the dimensionality of data with neural networks", Science, vol. 5786, pp. 504-507, 2006.
[23]
Z. Chen, and W. Li, "Multisensor feature fusion for bearing fault diagnosis using sparse autoencoder and deep belief network", IEEE Trans. Instrum. Meas., vol. 66, pp. 1693-1702, 2017.
[24]
C. Xia, F. Qi, and G. Shi, "re", IEEE Trans. Neural Netw. Learn. Syst., vol. 27, pp. 1227-1240, 2016.
[25]
Y. Qi, C. Shen, D. Wang, J. Shi, X. Jiang, and Z. Zhu, "Stacked sparse autoencoder-based deep network for fault diagnosis of rotating machinery", IEEE Access, vol. 5, pp. 15066-15079, 2017.
[26]
Y. Fan, L.I. Zuhe, F. Wang, and M.A. Jiangtao, "Affective abstract image classification based on convolutional sparse autoencoders across different domains", J. Electr. Inf. Technol., vol. 39, pp. 167-175, 2017.
[27]
Y.H. Lai, F. Chen, S.S. Wang, X. Lu, Y. Tsao, and C.H. Lee, "A deep denoising autoencoder approach to improving the intelligibility of vocoded speech in cochlear implant simulation", IEEE Trans. Biomed. Eng., vol. 64, pp. 1568-1578, 2017.
[28]
D. Luo, R. Yang, B. Li, and J. Huang, "Detection of double compressed AMR audio using stacked autoencoder", IEEE Trans. Inf. Forensics Security, vol. 12, pp. 432-444, 2017.
[29]
L. Zhang, W. Ma, and D. Zhang, "Stacked sparse autoencoder in polsar data classification using local spatial information", IEEE Geosci. Remote Sens. Lett., vol. 13, pp. 1359-1363, 2016.
[30]
F. Lv, M. Han, and T. Qiu, "Remote sensing image classification based on ensemble extreme learning machine with stacked autoencoder", IEEE Access, vol. 5, pp. 9021-9031, 2017.
[31]
M. Gong, J. Liu, H. Li, Q. Cai, and L. Su, "A multi-objective sparse feature learning model for deep neural networks", IEEE Trans. Neural Netw. Learn. Syst., vol. 26, pp. 3263-3277, 2017.
[32]
Y. Li, and S. Chu, "Construction and reduction methods of vulnerability index system in power SCADA", Int. J. Secur. Appl., vol. 8, pp. 335-352, 2014.