[1]
Reichmann, H. View point: Etiology in Parkinson’s disease. Dual hit or spreading intoxication. J. Neurol. Sci., 2011, 310(1-2), 9-11.
[2]
Davie, C.A. A review of Parkinson’s disease. Br. Med. Bull., 2008, 86, 109-127.
[3]
Rajput, A.; Dickson, D.W.; Robinson, C.A.; Ross, O.A.; Dächsel, J.C.; Lincoln, S.J.; Cobb, S.A.; Rajput, M.L.; Farrer, M.J. Parkinsonism, Lrrk2 G2019S, and tau neuropathology. Neurology, 2006, 67(8), 1506-1508.
[4]
Dauer, W.; Przedborski, S. Parkinson’s disease: Mechanisms and models. Neuron, 2003, 39(6), 889-909.
[5]
Brennan, K.A.; Genever, R.W. Managing parkinson’s disease during surgery. BMJ, 2010, 341, 990-993.
[6]
DeMaagd, G.; Philip, A. Parkinson’s disease and its management. P&T, 2015, 40(8), 504-510.
[7]
Velázquez-Paniagua, M.; Vázquez-Álvarez, A.M.; Valverde-Aguilar, G.; Vergara-Aragón, P. Current treatments in Parkinson’s including the proposal of an innovative dopamine microimplant. Rev. Med. Hosp. Gen. (Mex.), 2016, 79, 79-87.
[8]
Rosales-Martínez, P.; García-Pinilla, S.; Arroyo-Maya, I.J.; Hernández-Sánchez, H.; Cornejo-Mazón, M. Optimization of the conditions for the elaboration of chitosan nanoparticles charged with alpha lipoic acid, ascorbic acid and alpha-tocopherol. Rev. Mex. Ing. Quim., 2017, 16(1), 321-337.
[9]
Lee, K.C.; Chen, J.J. Transdermal selegiline for the treatment of major depressive disorder. Neuropsychiatr. Dis. Treat., 2007, 3(5), 527-537.
[10]
Wecker, L.; James, S.; Copeland, N.; Pacheco, M.A. Transdermal selegiline: Targeted effects on monoamine oxidases in the brain. Biol. Psychiatry, 2003, 54, 1099-1104.
[11]
Ali, J.; Ali, M.; Baboota, S.; Sahni, J.K.; Ramassamy, C.; Dao, L. Potential of nanoparticulate drug delivery systems by intranasal administration. Curr. Pharm. Des., 2010, 16, 1644-1653.
[12]
Dahlin, M.; Jansson, B.; Björk, E. Levels of dopamine in blood and brain following nasal administration to rats. Eur. J. Pharm. Sci., 2001, 14, 75-80.
[13]
Pardeshi, C.V.; Belgamwar, V.S. Direct nose to brain drug delivery via integrated nerve pathways bypassing the blood-brain barrier: An excellent platform for brain targeting. Expert Opin. Drug Deliv., 2013, 10, 957-972.
[14]
Carvalho, F.C.; Campos, M.L.; Peccinini, R.G.; Gremião, M.P. Nasal administration of liquid crystal precursor mucoadhesive vehicle as an alternative antiretroviral therapy. Eur. J. Pharm. Biopharm., 2013, 84, 219-227.
[15]
Singh, D.; Rashid, M.; Hallan, S.S.; Mehra, N.K.; Prakash, A.; Mishra, N. Pharmacological evaluation of nasal delivery of selegiline hydrochloride-loaded thiolated chitosan nanoparticles for the treatment of depression. Artif. Cells Nanomed. Biotechnol., 2016, 44, 865-877.
[16]
Mistry, A.; Stolnik, S.; Illum, L. Nanoparticles for direct nose-to-brain delivery of drugs. Int. J. Pharm., 2009, 379, 146-157.
[17]
Talegaonkar, S.; Mishra, P.R. Intranasal delivery: An approach to bypass the blood brain barrier. Indian J. Pharmacol., 2004, 36(3), 140-147.
[18]
Misra, A.; Ganesh, S.; Shahiwala, A.; Shah, S.P. Drug delivery to the central nervous system: A review. J. Pharm. Pharm. Sci., 2003, 6, 252-273.
[19]
Sharma, D.; Singh, M.; Kumar, P.; Vikram, V.; Mishra, N. Development and characterization of morin hydrate loaded microemulsion for the management of Alzheimer’s disease. Artif. Cells Nanomed. Biotechnol., 2017, 45, 1620-1630.
[20]
Loo, C.H.; Basri, M.; Ismail, R.; Lau, H.L.; Tejo, B.A.; Kanthimathi, M.S.; Hassan, H.A.; Choo, Y.M. Effect of compositions in nanostructured lipid carriers (NLC) on skin hydration and occlusion. Int. J. Nanomedicine, 2013, 8(1), 13-22.
[21]
Karunakar, G.; Patel, N.P.; Kamal, S.S. Nano structured lipid carrier based drug delivery system. J. Chem. Educ., 2016, 8, 627-643.
[22]
Thatipamula, R.P.; Palem, C.R.; Gannu, R.; Mudragada, S.; Yamsani, M.R. Formulation and in vitro characterization of domperidone loaded solid lipid nanoparticles and nanostructured lipid carriers. Daru, 2011, 19(1), 23-32.
[23]
Havanoor, S.M.; Manjunath, K.; Bhagawati, S.T.; Veerapur, V.P. Isradipine loaded solid lipid nanoparticles for better treatment of hypertension-preparation, characterization and in vivo evaluation. Int. J. Biopharm., 2014, 5, 218-224.
[24]
Luong, T.N.; Carlisle, H.J.; Southwell, A.; Patterson, P.H. Assessment of motor balance and coordination in mice using the balance beam. J. Vis. Exp., 2011, 10(49), 2376.
[25]
Singh, M.; Thakur, V.; Deshmukh, R.; Sharma, A.; Rathore, M.S.; Kumar, A.; Mishra, M. Development and characterization of Morin hydrate loaded micellar nanocarriers for the effective management of Alzheimer’s disease. J. Microencapsul., 2018, 35(2), 137-148.
[26]
Kulkarni, A.D.; Vanjari, Y.H.; Karan, H.; Sancheti, K.H.; Belgamwar, V.S.; Surana, S.J.; Pardeshi, C.V. Nanotechnology-mediated nose to brain drug delivery for Parkinson’s disease: A mini review. J. Drug Target., 2015, 23(9), 775-788.
[27]
Tanaka, S.; Jared, W.; Halberstadt, A.L.; Virginia, L.M.; Mark, A.; Geyer, M.A. Four factors underlying mouse behavior in an open field. Behav. Brain Res., 2012, 233(1), 1-17.
[28]
Tipple, T.E.; Rogers, L.K. Methods for the determination of plasma or tissue glutathione levels. Methods Mol. Biol., 2012, 889, 315-324.
[29]
Siddique, Y.H.; Ara, G.; Afzal, M. Estimation of lipid peroxidation induced by hydrogen peroxide in cultured human lymphocytes. Dose Response, 2012, 10(1), 1-10.
[30]
Shukla, R.; Rajani, M.; Srivastava, N.; Barthwal, M.K.; Dikshit, M. Nitrite and malondialdehyde content in cerebrospinal fluid of patients with Parkinson’s disease. Int. J. Neurosci., 2006, 116(12), 1391-1402.
[31]
Lowry, O.H.; Rosebrough, N.J.; Farr, A.L.; Randall, R.J. Protein measurement with the Folin phenol reagent. J. Biol. Chem., 1951, 193, 265-275.
[32]
Abdel Moneim, A.E. The neuroprotective effects of purslane (Portulaca oleracea) on rotenone-induced biochemical changes and apoptosis in brain of rat. CNS Neurol. Disord. Drug Targets, 2013, 12(6), 830-841.
[33]
Ahmed, E.; Abdel Moneim, A.; Mohamed, A. Dkhil.; Saleh Al-Quraishy. The potential role of Portulaca oleracea as a neuroprotective agent in rotenone-induced neurotoxicity and apoptosis in the brain of rats. Pestic. Biochem. Physiol., 2013, 105, 203-212.